AP Calculus AB

Unit 5 Homework ANSWERS

Name: \qquad

Applications of the Derivative - Part II

1. $c=2$
2. $c=\frac{2}{3}$
3. Rolle's Thm does not apply
4. $c=\frac{\pi}{2}$ or $c=\frac{3 \pi}{2}$
5. $c=\frac{\pi}{2}$
6. $c=-\frac{1}{3}$
7. MVT does not apply
8. $c=1$
9. $c \approx 0.217$ or $c \approx 1.748$
10. No, f is not continuous on $[-5,-1]$ or differentiable on $(-5,-1)$
11. No. f is not differentiable on $(-2,8)$
12. Yes. f is continuous on $[-1,8]$ and differentiable on $(-1,8)$
13. No, f is differentiable on $(0,5)$
14. $c \approx 0.093,1.478,3.234,4.620$
15. -6.015
16. (a) $B^{\prime}(7) \approx 1.530$, which means the number of beds in use in increasing at a rate of 1.53 beds per day on the 7 th day. (b) The maximum number of beds in use is 70 .
17. 4
18. $(0,2)$
19. $(2,6)$
20. $(2,3)$
21. (a) $p^{\prime}(2)=2 e^{4}-5 \approx 104.196 ; p^{\prime \prime}(2)=4 e^{4} \approx 218.393$
(b) It is speeding up
(c) left: $(0,0.458)$; right: $(0.458, \infty)$
(d) yes, at $t=0.458$
22. (a) 1.911
(b) $e^{2-t}(5-2 t)$
(c) $\frac{5}{2}$
23. moving left on $(0,2)$ since $v<0$, momentarily at rest at $t=2$ since $v=0$, moving right on $(2, \infty)$ since $v>0$. Slowing down on $(0,2)$ since $a>0$ and $v<0$, speeding up on $(2, \infty)$ since $a>0$ and $v>0$
24. (a) $-\frac{47}{150}$ miles per minute squared
(b) $(25,30)$
(c) away from
(d) -2.015 miles per minute squared; velocity is dereasing
25. speeding up
26. (a) left: $(1,5.2)$; right: $[0,1) \cup(5.2,7)$
(b) slowing down: $(0,1) \cup(3,5.2) \cup(6,7)$; speeding up: $(1,2) \cup(5.2,6)$
(c) $t=1$ and $t=5.2$
(d) $(2,3) \cup(7,9)$
27. (a) $-8 \mathrm{ft} / \mathrm{sec}$
(b) $(0,3)$
(c) $p^{\prime}(3)=0, p^{\prime \prime}(3)=10$ At $t=3$ seconds, the particle is momentarily at rest and changing direction (begins moving to the right).
(d) 0
(e) 40 feet
28. 2.555
29. (a) $(0,1)$ only
(b) $(2,3) \cup(5,6)$
(c) $v(t)= \begin{cases}2, & 0<t<1 \\ 0, & 1<t<2 \\ -\frac{1}{4}, & 2<t<3 \\ 0, & 3<t<5 \\ -2, & 5<t<6\end{cases}$
(d) $t=1,2,3,5$
(e) $-\frac{6}{5} \mathrm{~cm} / \mathrm{sec}$
30. (a) 3
(b) 0 ; the particle is at rest
(c) $0.845 \mathrm{~m} / \mathrm{sec}^{2}$
31. (a) $-35 \mathrm{ft} / \mathrm{min}^{2}$
(b) $(2,3)$
(c) No
(d) 4 minutes
32. (a) 1.588 ; speed is decreasing at $t=2$
(b) 2.507
33. (a) $(0,35) \cup(45,50)$
(b) $1.44 \mathrm{ft} / \mathrm{sec}^{2}$
(c) $2.1 \mathrm{ft} / \mathrm{sec}^{2}$
(d) speed is decreasing
34. (a) $6.667 \mathrm{~m} / \mathrm{sec} ; 6.857 \mathrm{~m} / \mathrm{sec}$
(b) $3.333 \mathrm{~m} / \mathrm{sec}^{2} ; 1.469 \mathrm{~m} / \mathrm{sec}^{2}$
35. (a) $-\frac{\pi}{6}$
(b) Statement I true; Statement II false
36. $\left(\frac{5}{2}, \sqrt{\frac{11}{2}}\right)$
37. $\frac{100}{3}$ by 25 feet
38. 8 by 8 feet
39. $\sqrt{\frac{25}{2}}$ by $\sqrt{\frac{25}{2}}$
40. 4.48 by 2.24 feet
41. 90.741 cubic inches
42. $r=2$
