1. The diagram below shows a quadrilateral ABCD with obtuse angles $\mathrm{AB} C$ and $A \hat{D} C$.

diagram not to scale
$\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm}, \mathrm{AD}=4 \mathrm{~cm}, \mathrm{~B} \hat{\mathrm{AC}}=30^{\circ}, \mathrm{ABC}=x^{\circ}, \mathrm{ADC}=y^{\circ}$.
(a) Use the cosine rule to show that $\mathrm{AC}=\sqrt{41-40 \cos x}$.
(b) Use the sine rule in triangle ABC to find another expression for AC .
2. The following diagram shows the triangle $A B C$.

diagram not to scale
The angle at C is obtuse, $\mathrm{AC}=5 \mathrm{~cm}, \mathrm{BC}=13.6 \mathrm{~cm}$ and the area is $20 \mathrm{~cm}^{2}$.
(a) Find A $\mathrm{C} B$.
(b) Find AB .
3. The diagram below shows a triangle $A B D$ with $A B=13 \mathrm{~cm}$ and $A D=6.5 \mathrm{~cm}$.

Let C be a point on the line BD such that $\mathrm{BC}=\mathrm{AC}=7 \mathrm{~cm}$.

diagram not to scale
(a) Find the size of angle ACB.
(b) Find the size of angle CAD.
4. The diagram below shows triangle $P Q R$. The length of $[P Q]$ is 7 cm , the length of $[P R]$ is 10 cm , and PQ̂R is 75°.

(a) Find angle QPR.
(b) Find the area of triangle PQR .
5. In the triangle $\mathrm{PQR}, \mathrm{PR}=5 \mathrm{~cm}, \mathrm{QR}=4 \mathrm{~cm}$ and $\mathrm{PQ}=6 \mathrm{~cm}$.

Calculate
(a) the size of $\mathrm{P} \hat{\mathrm{Q}} \mathrm{R}$;
(b) the area of triangle PQR .
6. A triangle has sides of length $4,5,7$ units. Find, to the nearest tenth of a degree, the size of the largest angle.
7. In a triangle $\mathrm{ABC}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{AC}=3 \mathrm{~cm}$ and $B=40^{\circ}$.

Find all possible values of the angle A .
(Total 6 marks)
8. The following diagram shows a pentagon ABCDE , with $\mathrm{AB}=9.2 \mathrm{~cm}, \mathrm{BC}=3.2 \mathrm{~cm}, \mathrm{BD}=7.1 \mathrm{~cm}$, $\mathrm{A} \hat{E} D=110^{\circ}, \mathrm{ADE}=52^{\circ}$ and $\mathrm{ABD}=60^{\circ}$.

(a) Find AD.
(b) Find DE.
(c) The area of triangle $B C D$ is $5.68 \mathrm{~cm}^{2}$. Find $D \hat{B C}$.
(d) Find AC.
(e) Find the area of quadrilateral ABCD .
9. The following diagram shows a circle with radius r and centre O . The points A, B and C are on the circle and AÔC $=\theta$.

The area of sector OABC is $\frac{4}{3} \pi$ and the length of $\operatorname{arc} \mathrm{ABC}$ is $\frac{2}{3} \pi$.
Find the value of r and of θ.
10. The diagram below shows a circle of radius r and centre O. The angle AÔB $=\theta$.

The length of the $\operatorname{arc} \mathrm{AB}$ is 24 cm . The area of the sector OAB is $180 \mathrm{~cm}^{2}$.
Find the value of r and of θ.
11. The following diagram shows a circle of centre O, and radius r. The shaded sector OACB has an area of $27 \mathrm{~cm}^{2}$. Angle AÔB $=\theta=1.5$ radians.

(a) Find the radius.
(b) Calculate the length of the minor arc ACB.
12. O is the centre of the circle which has a radius of 5.4 cm .

The area of the shaded sector $O A B$ is $21.6 \mathrm{~cm}^{2}$. Find the length of the minor arc $A B$.
13. The diagnam below shows a circle of radius 5 cm with centre O. Points A and B are on the circle, and is 0.8 radians. The point N is on [OB] such that [AN] is perpendicular to [OB].

Find the area of the shaded region.
(Total 6 marks)
14. The following diagram shows a circle of centre O, and radius 15 cm . The arc $A C B$ subtends an angle of 2 radians at the centre O .

Find
(a) the length of the arc ACB;
(b) the area of the shaded region.
15. The diagram below shows a sector AOB of a circle of radius 15 cm and centre O . The angle θ at the centre of the circle is 2 radians.

Diagram not to scale

(a) Calculate the area of the sector AOB.
(b) Calculate the area of the shaded region.
16. Consider the expansion of the expression $\left(x^{3}-3 x\right)^{6}$.
(a) Write down the number of terms in this expansion.
(b) Find the term in x^{12}.
(c) Does this expansion contain a constant term? Use the general term of the binomial expansion to explain why or why not.
17. Consider the expansion of $\left(x^{2}-2\right)^{5}$.
(a) Write down the number of terms in this expansion.
(b) The first four terms of the expansion in descending powers of x are

$$
x^{10}-10 x^{8}+40 x^{6}+A x^{4}+\ldots
$$

Find the value of A.

