1.
$$\tan^2 x = \frac{1}{3}$$
 (M1)
 $\Rightarrow \tan x = \pm \frac{1}{\sqrt{3}}$ (M1)
 $\Rightarrow x = 30^\circ \text{ or } x = 150^\circ$ (A1)(A1)(C2)(C2)

[4]

2.
$$AB = r\theta$$
$$= \frac{1}{2}r^{2}\theta \times \frac{2}{r}$$
(M1)(A1)
$$= 21.6 \times \frac{2}{r}$$
(A1)

$$= 8 \text{ cm} \tag{A1}$$

$$OR \frac{1}{2} \times (5.4)^2 \theta = 21.6$$

$$\Rightarrow \theta = \frac{4}{2.7} (= 1.481 \text{ radians}) \qquad (M1)$$

$$AB = r\theta \qquad (A1)$$

$$= 5.4 \times \frac{4}{2.7} \qquad (M1)$$

$$= 8 \text{ cm} \qquad (A1) \quad (C4)$$

$$[4]$$

3. *Note: Award* (*M1*) *for identifying the largest angle.*

$\cos \alpha = \frac{4^2 + 5^2 - 7^2}{2 \times 4 \times 5}$	(M1)
$=-\frac{1}{5}$	(A1)
$\Rightarrow \alpha = 101.5^{\circ}$	(A1)

OR Find other angles first

$\beta = 44.4^{\circ}$	$\gamma = 34.0^{\circ}$	(M1)
$\Rightarrow \alpha = 101.6^{\circ}$		(A1)(A1) (C4)
<i>Note:</i> Award (C3) if not given to the correct accuracy.		

[4]

4. From sketch of graph $y = 4 \sin\left(3x + \frac{\pi}{2}\right)$ or by observing $|\sin \theta| \le 1$.

[4]

(M2)

5.
$$\sin A = \frac{5}{13} \Rightarrow \cos A = \pm \frac{12}{13}$$
 (A1)
But *A* is obtuse $\Rightarrow \cos A = -\frac{12}{13}$ (A1)
 $\sin 2A = 2 \sin A \cos A$ (M1)
 $= 2 \times \frac{5}{13} \times \left(-\frac{12}{13}\right)$
 $= -\frac{120}{169}$ (A1) (C4)

IB Questionbank Maths SL

6. Area of a triangle = $\frac{1}{2} \times 3 \times 4 \sin A$ (A1) $\frac{1}{2} \times 3 \times 4 \sin A = 4.5$ (A1)

$$\sin A = 0.75$$
 (A1)
 $A = 48.6^{\circ} \text{ and } A = 131^{\circ} \text{ (or } 0.848, 2.29 \text{ radians)}$ (A1)(A2) (C6)

$$= 48.6^{\circ} \text{ and } A = 131^{\circ} \text{ (or } 0.848, 2.29 \text{ radians)}$$
(A1)(A2) (C6)
Note: Award (C4) for 48.6° only, (C5) for 131° only.

[6]

7.

e.g.
$$a = 7$$
 (accept $a = -7$) A1 N2

(ii) period = 12 (A1)
$$b = \frac{2\pi}{12}$$
 A1

$$b = \frac{\pi}{6}$$
 AG N0

(iii) attempt to substitute (M1)

$$e.g. d = \frac{29+15}{2}$$

 $d = 22$ A1 N2

(iv)
$$c = 3$$
 (accept $c = 9$ from $a = -7$)
Note: Other correct values for c can be found,
 $c = 3 \pm 12k, k \in \mathbb{Z}$.

(c)
$$g(t) = 7\cos\frac{\pi}{3}(t-4.5) + 12$$
 A1A2A1 N4

Note: Award A1 for
$$\frac{\pi}{3}$$
, A2 for 4.5, A1 for 12.
Other correct values for c can be found $c = 4.5 \pm 6k, k \in \mathbb{Z}$.

(d)	translation $\begin{pmatrix} -3\\ 10 \end{pmatrix}$	(A1)		
	horizontal stretch of a scale factor of 2 completely correct description, in correct order	(A1) A1	N3	

e.g. translation $\begin{pmatrix} -3\\ 10 \end{pmatrix}$ then horizontal stretch of a scale factor of 2

8. (a)
$$p = 30$$
 A2

(b) **METHOD 1**

$$Period = \frac{2\pi}{q}$$
(M2)

$$= \frac{\pi}{2}$$
(A1)

$$\Rightarrow q = 4$$
A1 4

$$\Rightarrow q = 4$$
 A1

METHOD 2

Horizontal stretch of scale factor = $\frac{1}{q}$	(M2)
scale factor = $\frac{1}{4}$	(A1)
$\Rightarrow q = 4$	A1

[6]

[16]

2

4

9. Using sine rule:
$$\frac{\sin B}{5} = \frac{\sin 48^{\circ}}{7}$$
 (M1)(A1)
 $\Rightarrow \sin B = \frac{5}{7} \sin 48^{\circ} = 0.5308...$ (M1)
 $\Rightarrow B = \arcsin (0.5308) = 32.06^{\circ}$ (M1)(A1)
 $= 32^{\circ} (\text{nearest degree})$ (M1)(A1)
(A1) (C6)

Note: Award a maximum of [5 marks] if candidates give the answer in radians (0.560).

[6]

10.	(a)	(i)	0	A1	N1
		(ii)	$-\frac{1}{2}$	A1	N1

(b)

A2 N2

(c)

A2 N2

[6]

M1A1 N2

Note: Award M1 for evidence of reflection in x-axis, A1 for correct vertex **and** all intercepts approximately correct.

(b) (i)
$$g(-3) = f(0)$$

 $f(0) = -1.5$
(A1)
A1 N2
(ii) translation (accept shift, slide, *etc.*) of $\begin{pmatrix} -3\\ 0 \end{pmatrix}$
(A1)
A1 N2

[6]

12. (a) I

- (b) III
- (c) IV

Note: Award (C4) for 3 correct, (C2) for 2 correct, (C1) for 1 correct.

[4]