1. $\tan ^{2} x=\frac{1}{3}$
$\Rightarrow \tan x= \pm \frac{1}{\sqrt{3}}$
$\Rightarrow x=30^{\circ}$ or $x=150^{\circ}$
(A1)(A1)(C2)(C2)
2. $A B=r \theta$
$=\frac{1}{2} r^{2} \theta \times \frac{2}{r}$
$=21.6 \times \frac{2}{5.4}$
$=8 \mathrm{~cm}$
(M1)(A1)

OR $\frac{1}{2} \times(5.4)^{2} \theta=21.6$
$\Rightarrow \theta=\frac{4}{2.7}$ (= 1.481 radians)
$A B=r \theta$
$=5.4 \times \frac{4}{2.7}$
$=8 \mathrm{~cm}$
(A1) (C4)
3. Note: Award (M1) for identifying the largest angle.
$\cos \alpha=\frac{4^{2}+5^{2}-7^{2}}{2 \times 4 \times 5}$
$=-\frac{1}{5}$
$\Rightarrow \alpha=101.5^{\circ}$

OR Find other angles first
$\beta=44.4^{\circ}$

$$
\begin{equation*}
\gamma=34.0^{\circ} \tag{M1}
\end{equation*}
$$

$\Rightarrow \alpha=101.6^{\circ}$
(A1)(A1) (C4)
Note: Award (C3) if not given to the correct accuracy.
4. From sketch of graph $y=4 \sin \left(3 x+\frac{\pi}{2}\right)$
or by observing $\mid \sin \theta \leq 1$.
$k>4, k<-4$
(A1)(A1)(C2)(C2)

5. $\sin A=\frac{5}{13} \Rightarrow \cos A= \pm \frac{12}{13}$

But A is obtuse $\Rightarrow \cos A=-\frac{12}{13}$
$\sin 2 A=2 \sin A \cos A$
$=2 \times \frac{5}{13} \times\left(-\frac{12}{13}\right)$
$=-\frac{120}{169}$
(A1) (C4)
6. Area of a triangle $=\frac{1}{2} \times 3 \times 4 \sin A$
$\frac{1}{2} \times 3 \times 4 \sin A=4.5$
$\sin A=0.75$
$A=48.6^{\circ}$ and $A=131^{\circ}$ (or 0.848, 2.29 radians)
Note: Award (C4) for 48.6° only, (C5) for 131° only.
7. (a) (i) attempt to substitute
e.g. $a=\frac{29-15}{2}$
$a=7($ accept $a=-7)$
A1 N2
(ii) period $=12$
$b=\frac{2 \pi}{12}$
$b=\frac{\pi}{6}$
AG N0
(iii) attempt to substitute
e.g. $d=\frac{29+15}{2}$
$d=22$
(iv) $c=3$ (accept $c=9$ from $a=-7$)

A1 N1
Note: Other correct values for c can be found, $c=3 \pm 12 k, k \in \mathbb{Z}$.
(b) stretch takes 3 to 1.5
translation maps $(1.5,29)$ to $(4.5,19)$ (so M^{\prime} is $(4.5,19)$)
(c) $\quad g(t)=7 \cos \frac{\pi}{3}(t-4.5)+12$

Note: Award A1 for $\frac{\pi}{3}$, A2 for 4.5, A1 for 12. Other correct values for c can be found $c=4.5 \pm 6 k, k \in \mathbb{Z}$.
(d) translation $\binom{-3}{10}$
horizontal stretch of a scale factor of 2
completely correct description, in correct order
e.g. translation $\binom{-3}{10}$ then horizontal stretch of a scale factor of 2
8. (a) $p=30$

A2 2
(b) METHOD 1

$$
\begin{align*}
\text { Period } & =\frac{2 \pi}{q} \tag{M2}\\
& =\frac{\pi}{2} \tag{A1}\\
& \Rightarrow q=4 \tag{A1 4}
\end{align*}
$$

METHOD 2

Horizontal stretch of scale factor $=\frac{1}{q}$

$$
\begin{equation*}
\text { scale factor }=\frac{1}{4} \tag{M2}
\end{equation*}
$$

$$
\begin{equation*}
\Rightarrow q=4 \tag{A1}
\end{equation*}
$$

A1 4
9. Using sine rule: $\frac{\sin B}{5}=\frac{\sin 48^{\circ}}{7}$
(M1)(A1)
$\Rightarrow \sin B=\frac{5}{7} \sin 48^{\circ}=0.5308 \ldots$
$\Rightarrow B=\arcsin (0.5308)=32.06^{\circ}$
$=32^{\circ}$ (nearest degree)
(A1) (C6)
Note: Award a maximum of [5 marks] if candidates give the answer in radians (0.560).
10. (a) (i) 0
(ii) $-\frac{1}{2}$

A1 N1
(b)

(c)

11. (a)

M1A1 N2
Note: Award M1 for evidence of reflection in x-axis, Al for correct vertex and all intercepts approximately correct.
(b)

$$
\text { (i) } \quad \begin{aligned}
& g(-3)=f(0) \\
& f(0)=-1.5
\end{aligned}
$$

(A1)
A1 N2
(ii) translation (accept shift, slide, etc.) of $\binom{-3}{0}$

A1A1 N2
12. (a) I
(b) III
(c) IV

Note: Award (C4) for 3 correct, (C2) for 2 correct, (C1) for 1 correct.

