1. (a) $(1,-2)$
(b) $g(x)=3(x-1)^{2}-2(\operatorname{accept} p=1, q=-2)$
(c) $(1,2)$

A1A1 N2

A1A1 N2 2
2. (a) $f^{\prime}(x)=x^{2}-2 x-3$
evidence of solving $f^{\prime}(x)=0$
e.g. $x^{2}-2 x-3=0$
evidence of correct working
e.g. $(x+1)(x-3), \frac{2 \pm \sqrt{16}}{2}$
$x=-1$ (ignore $x=3$)
evidence of substituting their negative x-value into $f(x)$
e.g. $\frac{1}{3}(-1)^{3}-(-1)^{2}-3(-1),-\frac{1}{3}-1+3$
$y=\frac{5}{3}$
coordinates are $\left(-1, \frac{5}{3}\right)$
(b) (i) $(-3,-9)$
(ii) $(1,-4)$
(iii) reflection gives $(3,9)$
stretch gives $\left(\frac{3}{2}, 9\right)$
A1A1 N3
3. (a) attempt to form composition (in any order)

$$
(f \circ g)(x)=(x-1)^{2}+4 \quad\left(x^{2}-2 x+5\right)
$$

(M1)
A1 N2
(b) METHOD 1
vertex of $f \circ g$ at $(1,4)$
evidence of appropriate approach
$e . g$. adding $\binom{3}{-1}$ to the coordinates of the vertex of $f \circ g$
vertex of h at $(4,3)$
A1 N3

METHOD 2

attempt to find $h(x)$
e.g. $((x-3)-1)^{2}+4-1, h(x)=(f \circ g)(x-3)-1$
$h(x)=(x-4)^{2}+3$
vertex of h at $(4,3)$
(c) evidence of appropriate approach
e.g. $(x-4)^{2}+3,(x-3)^{2}-2(x-3)+5-1$
simplifying
e.g. $h(x)=x^{2}-8 x+16+3, x^{2}-6 x+9-2 x+6+4$
$h(x)=x^{2}-8 x+19$
AG N0
(d) METHOD 1
equating functions to find intersection point
e.g. $x^{2}-8 x+19=2 x-6, y=h(x)$
$x^{2}-10 x+25=0$
evidence of appropriate approach to solve
e.g. factorizing, quadratic formula
appropriate working
e.g. $(x-5)^{2}=0$
$x=5(p=5)$
A1 N3

METHOD 2

attempt to find $h^{\prime}(x)$
$h^{\prime}(x)=2 x-8$
recognizing that the gradient of the tangent is the derivative
e.g. gradient at $p=2$
$2 x-8=2(2 x=10)$
$x=5$
4. (a)

(b) evidence of appropriate approach
e.g. reference to any horizontal shift and/or stretch factor, $x=3+1, y=\frac{1}{2} \times 2$

P is $(4,1)$ (accept $x=4, y=1)$
A1A1 N3
5. (a)

Note: Award M1 for evidence of reflection in x-axis, Al for correct vertex and all intercepts approximately correct.
(b) (i) $\quad g(-3)=f(0)$

$$
f(0)=-1.5
$$

(ii) translation (accept shift, slide, etc.) of $\binom{-3}{0}$

A1 N2

A1A1 N2
6. (a) For a reasonable attempt to complete the square, (or expanding)

A1A1 N3
7. (a)

A1A1A1 N3
Notes: Award A1 for left end point in circle 1,
Al for maximum point in circle 2,
Al for right end point in circle 3.
(b) $y=1$ (must be an equation)
(c) $(0,3)$

A1A1 N2
[6]
8. (a) (i)

(A2) (C2)
(ii)

(A2) (C2)
(b) $\quad \mathrm{A}^{\prime}(3,2)($ Accept $x=3, y=2)$
(A1)(A1) (C2)
9.

(a)
(A1)(A1) (C2)
(b)
(A1)(A3) (C4)
(a)

Note: Award (A1) for the correct line, (A1) for using the given domain.
(b) Correct domain
(A1)

EITHER

The correct line drawn

OR

$$
\begin{align*}
g(x) & =f(x+3)-2 \\
& =(2(x+3)+1)-2 \tag{M1}\\
& =2 x+5 \tag{A1}
\end{align*}
$$

Candidate's line drawn

OR

$g(-3)=-1 \quad g(-1)=3$
(A1)(A1)
Line joining $g(-3)$ and $g(-1)$ drawn
10. (a) $g(x)=2 f(x-1)$

x	0	1	2	3
$x-1$	-1	0	1	2
$f(x-1)$	3	2	0	1

$$
\begin{aligned}
& g(0)=2 f(-1)=6 \\
& g(1)=2 f(0)=4 \\
& g(2)=2 f(1)=0 \\
& g(3)=2 f(2)=2
\end{aligned}
$$

(A1) (C1)
(A1) (C1)
(A1) (C1)
(A1) (C1)
(b) Graph passing through $(0,6),(1,4),(2,0),(3,2)$
(A1)
Correct shape.
(A1)

(C2)

