1.	(a)	(1, -2)	A1A1	N2	2
	(b)	$g(x) = 3(x-1)^2 - 2$ (accept $p = 1, q = -2$)	A1A1	N2	2
	(c)	(1, 2)	A1A1	N2	2

[6]

2. (a)
$$f'(x) = x^2 - 2x - 3$$
 A1A1A1
evidence of solving $f'(x) = 0$ (M1)
e.g. $x^2 - 2x - 3 = 0$
evidence of correct working
e.g. $(x + 1)(x - 3)$, $\frac{2 \pm \sqrt{16}}{2}$
 $x = -1$ (ignore $x = 3$) (A1)
evidence of substituting **their negative** x-value into $f(x)$ (M1)
e.g. $\frac{1}{3}(-1)^3 - (-1)^2 - 3(-1), -\frac{1}{3} - 1 + 3$
 $y = \frac{5}{3}$ A1
coordinates are $\left(-1, \frac{5}{3}\right)$ N3
(b) (i) $(-3, -9)$ A1 N1
(ii) $(1, -4)$ A1A1 N2
(iii) reflection gives $(3, 9)$ (A1)
stretch gives $\left(\frac{3}{2}, 9\right)$ (A1)

[14]

3.	(a)	attempt to form composition (in any order)	(M1)	
		$(f \circ g)(x) = (x-1)^2 + 4$ $(x^2 - 2x + 5)$	A1	N2

(b) METHOD 1

vertex of $f \circ g$ at $(1, 4)$	(A1)
-----------------------------------	------

evidence of appropriate approach

e.g. adding
$$\begin{pmatrix} 3 \\ -1 \end{pmatrix}$$
 to the coordinates of the vertex of $f \circ g$
vertex of *h* at (4, 3) A1 N3

(M1)

METHOD 2

attempt to find $h(x)$ e.g. $((x-3)-1)^2 + 4 - 1$, $h(x) = (f \circ g)(x-3) - 1$	(M1)
$h(x) = (x - 4)^2 + 3$	(A1)

(c)	evidence of appropriate approach	(M1)	
	<i>e.g.</i> $(x-4)^2 + 3$, $(x-3)^2 - 2(x-3) + 5 - 1$		
	simplifying	A1	
	<i>e.g.</i> $h(x) = x^2 - 8x + 16 + 3$, $x^2 - 6x + 9 - 2x + 6 + 4$		
	$h(x) = x^2 - 8x + 19$	AG	N0

(d) METHOD 1

equating functions to find intersection point e.g. $x^2 - 8x + 19 = 2x - 6$, $y = h(x)$	(M1)
$x^2 - 10x + 25 = 0$	A1
evidence of appropriate approach to solve <i>e.g.</i> factorizing, quadratic formula	(M1)
appropriate working e.g. $(x-5)^2 = 0$	A1

$$x = 5 (p = 5)$$
 A1 N3

METHOD 2

attempt to find $h'(x)$ h'(x) = 2x - 8	(M1) A1		
recognizing that the gradient of the tangent is the derivative <i>e.g.</i> gradient at $p = 2$	(M1)		
$2x - 8 = 2 \ (2x = 10)$	A1		
<i>x</i> = 5	A1	N3	
			[12]

Note: Award M1 for evidence of reflection in x-axis, A1 for correct vertex **and** all intercepts approximately correct.

M1A1 N2

(b) (i)
$$g(-3) = f(0)$$
 (A1)
 $f(0) = -1.5$ A1 N2

(ii) translation (accept shift, slide, *etc.*) of
$$\begin{pmatrix} -3 \\ 0 \end{pmatrix}$$
 A1A1 N2

(a) For a reasonable attempt to complete the square, (or expanding) *e.g.* $3x^2 - 12x + 11 = 3(x^2 - 4x + 4) + 11 - 12$ $f(x) = 3(x - 2)^2 - 1$ (accept h = 2, k = 1) A1A1 N3

(b)	METHOD 1			
	Vertex shifted to $(2 + 3, -1 + 5) = (5, 4)$	M1		
	so the new function is $3(x-5)^2 + 4$ (accept $p = 5, q = 4$)	A1A1	N2	
	METHOD 2			
	$g(x) = 3((x-3) - h)^{2} + k + 5 = 3((x-3) - 2)^{2} - 1 + 5$	M1		
	$= 3(x-5)^{2} + 4$ (accept $p = 5, q = 4$)	A1A1	N2	
				[6]

6.

A1A1A1 N3

Notes: Award A1 for left end point in circle 1, A1 for maximum point in circle 2, A1 for right end point in circle 3. [6]

(c) (0, 3) A1A1 N2

(A1)(A1) (C2)

(b) A' (3, 2) (Accept x=3, y=2)

[6]

[6]

10.	(a) $g(x)$	=2f(x-1))				
	x	0	1	2	3		
	x - 1	-1	0	1	2		
	f(x-1)	3	2	0	1		
	g(0) = 2f(0) g(1) = 2f(0) g(2) = 2f(0) g(3) = 2f(0)	(-1) = 6 (0) = 4 (1) = 0 (2) = 2				(A1) (C (A1) (C (A1) (C (A1) (C	1) 1) 1) 1)

(b) Graph passing through (0, 6), (1, 4), (2, 0), (3, 2) Correct shape.

[6]