correct substitution (A1) $eg \quad 0.3 \times 0.6$ $P(A \cap B) = 0.18$ A1 N2 [2 marks] 20b. [2 marks] correct substitution (A1) $eg \quad P(A \cup B) = 0.3 + 0.6 - 0.18$ $P(A \cup B) = 0.72$ A1 N2

[2 marks]

20c. [1 mark]

A1 N1

20d. [2 marks]

Markscheme

appropriate approach (M1)

 $_{eg}$ 0.3 – 0.18, $\mathrm{P}(A) imes \mathrm{P}(B')$

 $\mathrm{P}(A \cap B') = 0.12$ (may be seen in Venn diagram) A1 N2

[2 marks]

21a. [2 marks]

attempt to find number who took less than 45 minutes (M1)

eg line on graph (vertical at approx 45, or horizontal at approx 70)

70 students (accept 69) A1 N2

[2 marks]

21b. [3 marks]

55 students completed task in less than 35 minutes (A1)

subtracting **their** values (M1)

eg 70 – 55

15 students A1 N2

[3 marks]

21c. [2 marks]

```
correct approach (A1)
```

```
eg line from y-axis on 50
```

$$k = 33$$
 A1 N2

[2 marks]

22a. [2 marks]

Note: There may be slight differences in answers, depending on whether candidates use tables or GDCs, or their 3 sf answers in subsequent parts. Do not penalise answers that are consistent with **their** working and check carefully for *FT*.

attempt to standardize (M1)

$$_{eg}$$
 $z=rac{21.8-20}{1.25},\ 1.44$ ${
m P}(T<21.8)=0.925$ at N2

[2 marks]

22b. [5 marks]

Note: There may be slight differences in answers, depending on whether candidates use tables or GDCs, or their 3 sf answers in subsequent parts. Do not penalise answers that are consistent with **their** working and check carefully for *FT*.

attempt to subtract probabilities (M1)

$$_{eg}$$
 P(T < 21.8) – P(T < k) = 0.3, 0.925 – 0.3

$$P(T < k) = 0.625$$
 A1

EITHER

finding the *z*-value for 0.625 (A1)

eg
$$z = 0.3186$$
 (from tables), $z = 0.3188$

attempt to set up equation using **their** *z*-value (*M*1)

eg
$$0.3186 = \frac{k-20}{1.25}, -0.524 \times 1.25 = k - 20$$

 $k = 20.4$ A1 N3
OR
 $k = 20.4$ A3 N3
[5 marks]
23a. [5 marks]

(i) attempt to find
$$P(red) \times P(red)$$
 (M1)
 $eg \quad \frac{3}{8} \times \frac{2}{7}, \frac{3}{8} \times \frac{3}{8}, \frac{3}{8} \times \frac{2}{8}$
 $P(none green) = \frac{6}{56} \left(=\frac{3}{28}\right)$ A1 N2

(ii) attempt to find $P(red) \times P(green)$ (M1)

$$eg \ \frac{5}{8} \times \frac{3}{7} , \frac{3}{8} \times \frac{5}{8} , \frac{15}{56}$$

recognizing two ways to get one red, one green (M1)

$$_{eg}~~2\mathrm{P}(R) imes\mathrm{P}(G)$$
 , $rac{5}{8} imesrac{3}{7}+rac{3}{8} imesrac{5}{7}$, $rac{3}{8} imesrac{5}{8} imes2$

 $P(exactly one green) = \frac{30}{56} \left(= \frac{15}{28}\right) A1 N2$

[5 marks]

23b. [3 marks]

$$P(\text{both green}) = \frac{20}{56}$$
 (seen anywhere) (A1)

correct substitution into formula for ${
m E}(X)$ A1

$$_{eg}$$
 $0 imesrac{6}{56}+1 imesrac{30}{56}+2 imesrac{20}{56}$, $rac{30}{64}+rac{50}{64}$

expected number of green marbles is $\frac{70}{56} \left(=\frac{5}{4}\right)$ A1 N2

[3 marks]

23c. [2 marks]

(i)
$$P(\text{jar } B) = \frac{4}{6} \left(=\frac{2}{3}\right)$$

(ii) $P(\text{red} | \text{ jar } B) = \frac{6}{8} \left(=\frac{3}{4}\right)$
A1 N1

23d. [6 marks]

recognizing conditional probability (M1)

$$_{eg}~~{
m P}(A|R)$$
 , $rac{{
m P}({
m jar}~{
m A}~{
m and}~{
m red})}{{
m P}({
m red})}$, tree diagram

attempt to multiply along either branch (may be seen on diagram) (M1)

$$_{eg} ~~ \mathrm{P}(\mathrm{jar}~\mathrm{A~and~red}) = rac{1}{3} imes rac{3}{8} \left(= rac{1}{8}
ight)$$

attempt to multiply along **other** branch (M1)

$$_{eg}$$
 P(jar B and red) = $\frac{2}{3} \times \frac{6}{8} \left(=\frac{1}{2}\right)$

adding the probabilities of two mutually exclusive paths (A1)

$$_{eg} \operatorname{P(red)} = rac{1}{3} imes rac{3}{8} + rac{2}{3} imes rac{6}{8}$$

correct substitution

$$P(\text{jar A}|\text{red}) = \frac{\frac{1}{3} \times \frac{3}{8}}{\frac{1}{3} \times \frac{3}{8} + \frac{2}{3} \times \frac{6}{8}}, \frac{\frac{1}{8}}{\frac{5}{8}}$$

$$A1$$

 $P(ar A|red) = \frac{1}{5}$ A1 N3

[6 marks]

24a. [2 marks]

valid approach (M1)

 $_{eg}~~35-26$, 26+p=36

p=9 A1 N2

[2 marks]

24b. [4 marks]

- (i) mean = 26.7 A2 N2
- (ii) recognizing that variance is (sd)² (M1)

$$_{eg}$$
 11.021 \ldots^2 , $\sigma=\sqrt{\mathrm{var}}$, 11.158 \ldots^2

$$\sigma^2=121$$
 A1 N2

[4 marks]

25a. [2 marks]

evidence of valid approach (M1)

e.g. 92+52 , line on graph at x=31

p=144 at N2

[2 marks]

25b. [5 marks]

(i) evidence of valid approach (M1)

e.g. line on graph, 0.8 imes 160 , using complement

= 29.5 A1 N2

(ii) $Q_1 = 23$; $Q_3 = 29$ (A1)(A1)

IQR = 6 (accept any notation that suggests an interval) A1 N3

[5 marks]

26a. [1 mark]

median = 174(cm) A1 N1

[1 mark]

26b. [2 marks]

attempt to find number shorter than 161 (M1)

e.g. line on graph, 12 boys

$$p = rac{12}{200} (= 0.06)$$
 A1 N2

[2 marks]

26c. [3 marks]

METHOD 1

18% have a height less than *h* (A1)

0.18 imes 200 = 36 (36 may be seen as a line on the graph) (A1)

 $h = 166 \,({\rm cm})$ A1 N2

METHOD 2

0.82 imes 200 = 164 (164 may be seen as a line on the graph) (A1)

$$200 - 164 = 36$$
 (A1)

$$h = 166$$
 (cm) A1 N2

[3 marks]

27a. [1 mark]

$$\mathrm{P}(X=2)=rac{4}{14}\left(=rac{2}{7}
ight)$$
 A1 N1

[1 mark]

27b. [4 marks]

$$P(X = 1) = \frac{1}{14}$$
 (A1)
 $P(X = k) = \frac{k^2}{14}$ (A1)

setting the sum of probabilities = 1 *M1*

e.g.
$$\frac{1}{14} + \frac{4}{14} + \frac{k^2}{14} = 1$$
, $5 + k^2 = 14$
 $k^2 = 9 (\text{accept} \frac{k^2}{14} = \frac{9}{14})$ A1
 $k = 3$ AG N0
[4 marks]

27c. [2 marks]

correct substitution into ${
m E}(X)=\sum x {
m P}(X=x)$ A1

e.g.
$$1\left(\frac{1}{14}\right) + 2\left(\frac{4}{14}\right) + 3\left(\frac{9}{14}\right)$$

 $E(X) = \frac{36}{14}\left(=\frac{18}{7}\right)_{A1}$ N1

[2 marks]

Printed for Myers Park High School

© International Baccalaureate Organization 2019

International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®