IB Math SL 2/ AB Calculus AB Midterm Review

1. If
$$y = (x^3 + 1)^2$$
, then $\frac{dy}{dx} =$

$$(A)(3x^2)^2$$

(B)
$$2(x^3 + 1)$$

B)
$$2(x^3 + 1)$$

(C)
$$2(3x^2 + 1)$$

(D)
$$3x^2(x^3+1)$$

$$(E)6x^2(x^3+1)$$

statements must be true? 2. For $x \ge 0$, the horizontal line y = 2 is an asymptote for the graph of the function f. Which of the following

(B) $\lim_{x\to\infty} f(x) = 2$ (C) f(2) is undefined (D) $\lim_{x\to 2} f(x) = \infty$ (E) $f(x) \neq 2$ for all

3. If
$$y = \frac{2x+3}{3x+2}$$
, then $\frac{dy}{dx} =$

(A) f(0) = 2

$$(A)\frac{12x+13}{(3x+2)^2}$$

(B)
$$\frac{12x-13}{(3x+2)^2}$$

$$\frac{12x-13}{(3x+2)^2}$$

(C)
$$\frac{5}{(3x+2)^2}$$

$$\frac{-5}{(D)(3x+2)^2}$$

$$\frac{-5}{(+2)^2}$$
 (E) $\frac{2}{3}$

$$4. \lim_{x \to \infty} \frac{x^3 - 2x^2 + 3x - 4}{4x^3 - 3x^2 + 2x - 1} =$$

(A) 4

(C)

(D) 0

5. If $f(x) = x\sqrt{2x-3}$, then f'(x) =

$$(B) \frac{x}{\sqrt{2x-3}}$$

 $(A) \frac{3x-3}{\sqrt{2x-3}}$

$$(C) \frac{1}{\sqrt{2x-3}}$$

$$(D) \frac{3-x}{\sqrt{2x-3}}$$

(E)
$$\frac{5x-6}{2\sqrt{2x-3}}$$

6. If $f(x) = \ln(x + 4 + e^{-3x})$, then f'(0) is

(B)
$$\frac{1}{5}$$

(C) $\frac{1}{4}$

(D)
$$\frac{2}{5}$$

$$\frac{5}{5} \times \frac{1}{2} (2x-3)^{-1/2} (2x) + (2x-3)^{1/2}$$

$$(2x-3)^{-1/2} \left[x + 2x-3 \right]$$

$$\frac{3x-3}{\sqrt{2x-3}}$$

NON-CALCULATOR

(B) e^4

(C) $2e^4$

(E)4e4

NON-CALCULATOR

8. What is the slope of the tangent to the curve $3y^2 - 2x^2 = 6 - 2xy$ at the point (3, 2)?

(C)
$$\frac{7}{9}$$

(E) $\frac{5}{3}$

$$2x^2 = 6 - 2xy$$

(D) $\frac{6}{7}$

$$9. \frac{d}{dx}\cos^2(x^3) =$$

(A)
$$6x^2 \sin(x^3)\cos(x^3)$$

(C) $\sin^2(x^3)$

(B)
$$6x^2 \cos(x^3)$$

(D) $-6x^2 \sin(x^3)\cos(x^3)$

$$\cos(x^3)$$

(B) $6x^2 \cos(x^3)$ (D) $-6x^2 \sin(x^3)\cos(x^3)$ (E) $-2\sin(x^3)\cos(x^3)$

10. Let f be the function with *derivative* given by $f'(x) = x^2 - \frac{8}{x}$. On which of the following intervals is f decreasing?

$$(E)(2,\infty)$$

11. Find f'(x) if $f(x) = \tan x + \sin x$.

(A)
$$\sec^2 x + \cos x$$

(C) $\sec x \tan x + \cos x$

(B)
$$\sec^2 x - \cos x$$

(D) $\cot x + \cos x$

(E)
$$\sec x \tan x - \cos x$$

12. Let f be the function given by $f(x) = 2xe^x$. The graph of f is concave down when

$$(A)x < -2$$
 (B) $x > -2$

(B)
$$x > -2$$

3)
$$x > -2$$

(C)
$$x < -1$$

(D) x > -1

(E)
$$x < 0$$

(A) 41

13. Find $\lim_{x\to 2} (3x^2 + 5)$

11) Sec2x + WSX

7)
$$\lim_{x\to 2} \frac{2xe^{x^2}}{1} = 4e^4$$
a) $\left[\cos(x^3)\right]^2$
2 $\cos(x^3) \cdot 3x^2 \cdot \sin(x^3)$

NON-CALCULATOR

14. Let $f(x) = \begin{cases} x+2 & \text{if } x \le 3 \\ 4x-7 & \text{if } x > 3 \end{cases}$. Which of the following statements are true about f?

I. $\lim_{x\to 3} f(x)$ exists

(B) I only

(A) None

II. f is continuous at x = 3

III. f is differentiable at x = 3

(C) II only (D)) & II only (E) I, II, & III

15. The second derivative of the function f is given by $f''(x) = x(x-a)(x-b)^2$. The graph of f'' is shown below. For what values of x does the graph of f have a point of inflection?

(A)0 & a only

(B) 0 & m only

(C) b & j only

(D) 0, a, & b

(E) b, j, & k

9

graph of f at the point where x = -1? 16. Let f be the function defined by $f(x) = 4x^3 - 5x + 3$. Which of the following is an equation of the line tangent to the

(A)
$$y = 7x - 3$$

(B) y = 7x + 7

(C) y = 7x + 11

(D) y = -5x - 1

(E) y = -5x - 5

ô Э

18. Given that
$$f(x) = x^3$$
, find the average rate of change of $f(x)$ on the interval [1, 3]
$$(S \setminus O \cap R) \setminus (C) \quad (D) \quad \frac{27}{2}$$
(A) 6

(1,1) (3,27)

(A) 6

(D) $\frac{27}{2}$

(E) √13

3-1 = 26 = 13

CALCULATOR ACTIVE 17. The function f has the property that f(x), f'(x), and f''(x) are negative for all real values x. Which of the following could be the graph of f?

3

CALCULATOR ACTIVE

19. The graph of a function f is shown above. At which value of x is f continuous, but not differentiable?

(E)

(B) b

Ô

Đβ

Graph of f

20. The graph of f', the derivative of f, is shown above. Which of the following statements is true about f?

(A) f is decreasing for $-1 \le x \le 1$ (D) f has a local minimum at x = 0

- (B) f is increasing for $-2 \le x \le 0$ (C) f is increas (E) f is not differentiable at x = -1 and x = 1(C) f is increasing for $1 \le x \le 2$
- 21. The function f is continuous for $-2 \le x \le 1$ and differentiable for $-2 \le x \le 1$. If f(-2) = -5 and f(1) = 4, which of the following statements could be false?

(A) There exists c, where -2 < c < 1, such that f(c) = 0.

(B) There exists c, where -2 < c < 1, such that f'(c) = 0.

($\overline{\mathbb{C}}$) There exists c, where -2 < c < 1, such that f(c) = 3.

- (D) There exists c, where -2 < c < 1, such that f'(c) = 3.
- (E) There exists c, where $-2 \le c \le 1$, such that $f(c) \ge f(x)$ for all x on the closed interval $-2 \le x \le 1$.
- 22. The radius of a circle is increasing at a constant rate of 0.2 meters per second. What is the rate of increase in the area of the circle at the instant when the circumference of the circle is 20π meters?

- (A) $0.04\pi \frac{\text{m}^2}{\text{sec}}$
- (B) $0.4\pi \frac{\text{m}^2}{\text{sec}}$
- (C) An m²
- (D) $20\pi \frac{m^2}{\text{sec}}$
- (E) $100\pi \frac{m^2}{\sec}$

CALCULATOR ACTIVE

23. For which of the following does $\lim_{x \to a} f(x) = x \sin x$

(B) II only

(A) I only

- (C) III only (D)) & II only (E) I & III only
- 24. If $f(x) = \begin{cases} \ln x ; 0 < x \le 2 \end{cases}$ $x^2 \ln 2$; $2 < x \le 4$, at what value of x does f attain its maximum value on the interval [0, 2]?
- (B) in 8
- (C) ln 16
- () (E) nonexistent
- on the interval 2 < x < 4? 25. Let f be the function with derivative given by $f'(x) = \sin(x^2 + 1)$. How many relative extrema does f have
- (A) One (B) Two
- (C) Three
- (D)Four
- (E) Five
- its maximum value on the interval [0, 2]? 26. Let f be the function with a first derivative of $f'(x) = \sin(x^3)$ for $0 \le x \le 2$. At what value of x does f attain
- (A) 0
- (B))1.162
- (C) 1.465
- (D) 1.845
- (E) 2
- 27. If $f'(x) = (x-2)(x-3)^2(x-4)^3$, then f has which of the following relative extrema?

III. A relative maximum at x = 4I. A relative maximum at x = 2. II. A relative minimum at x = 3.

((A))I only

(B) III only

(C) I & III

- 3
- (D) II & III
- (E) I, II, & III