REVIEW SET 6A

NON-CALCULATOR

1 Identify the following sequences as arithmetic, geometric, or neither:

a
$$7, -1, -9, -17, \dots$$

$$4, -2, 1, -\frac{1}{2}, \dots$$

2 Find k if 3k, k-2, and k+7 are consecutive terms of an arithmetic sequence.

3 Show that $28, 23, 18, 13, \dots$ is an arithmetic sequence. Hence find u_n and the sum S_n of the first n terms in simplest form.

4 Find k given that 4, k, and $k^2 - 1$ are consecutive terms of a geometric sequence.

5 Determine the general term of a geometric sequence given that its sixth term is $\frac{16}{3}$ and its tenth term is $\frac{256}{3}$.

6 Insert six numbers between 23 and 9 so that all eight numbers are in arithmetic sequence.

7 Find, in simplest form, a formula for the general term u_n of:

b
$$\frac{3}{4}$$
, 1, $\frac{7}{6}$, $\frac{9}{7}$,

Hint: One of these sequences is neither arithmetic nor geometric.

8 Expand and hence evaluate:

a
$$\sum_{k=1}^{7} k^2$$

a
$$\sum_{k=1}^{7} k^2$$
 b $\sum_{k=1}^{8} \frac{k+3}{k+2}$

9 Find the sum of each of the following infinite geometric series:

a
$$18 - 12 + 8 - \dots$$

b
$$8+4\sqrt{2}+4+...$$

10 A ball bounces from a height of 3 metres and returns to 80% of its previous height on each bounce. Find the total distance travelled by the ball until it stops bouncing.

11 The sum of the first n terms of an infinite sequence is $\frac{3n^2 + 5n}{2}$ for all $n \in \mathbb{Z}^+$.

a Find the *n*th term.

b Prove that the sequence is arithmetic.

REVIEW SET 6B

CALCULATOR

1 A sequence is defined by $u_n = 6(\frac{1}{2})^{n-1}$.

a Prove that the sequence is geometric.

b Find u_1 and r.

• Find the 16th term of the sequence to 3 significant figures.

2 Consider the sequence $24, 23\frac{1}{4}, 22\frac{1}{2}, ...$

a Which term of the sequence is -36?

b Find the value of u_{35} .

 \bullet Find S_{40} , the sum of the first 40 terms of the sequence.

3 Find the sum of:

a the first 23 terms of 3 + 9 + 15 + 21 + ...

the first 12 terms of 24 + 12 + 6 + 3 + ...

4 Find the first term of the sequence 5, 10, 20, 40, which exceeds 10 000.

5 What will an investment of €6000 at 7% p.a. compound interest amount to after 5 years if the interest is compounded:

a annually

b quarterly

c monthly?

6 The *n*th term of a sequence is given by the formula $u_n = 5n - 8$.

a Find the value of u_{10} .

b Write down an expression for $u_{n+1} - u_n$ and simplify it.

• Hence explain why the sequence is arithmetic.

d Evaluate $u_{15} + u_{16} + u_{17} + \dots + u_{30}$.

7 A geometric sequence has $u_6 = 24$ and $u_{11} = 768$. Determine the general term of the sequence and hence find:

a u_{17}

b the sum of the first 15 terms.

- **8** Find the first term of the sequence $24, 8, \frac{8}{3}, \frac{8}{9}, \dots$ which is less than 0.001.
- **a** Determine the number of terms in the sequence 128, 64, 32, 16, ..., $\frac{1}{512}$.

Find the sum of these terms.

10 Find the sum of each of the following infinite geometric series:

a $1.21 - 1.1 + 1 - \dots$

b $\frac{14}{3} + \frac{4}{3} + \frac{8}{21} + \dots$

- 11 How much should be invested at a fixed rate of 9% p.a. compound interest if you need it to amount to \$20 000 after 4 years with interest paid monthly?
- **12** In 2004 there were 3000 iguanas on a Galapagos island. Since then, the population of iguanas on the island has increased by 5% each year.
 - **a** How many iguanas were on the island in 2007?
 - **b** In what year will the population first exceed 10 000?

REVIEW SET 6C

1 A sequence is defined by $u_n = 68 - 5n$.

a Prove that the sequence is arithmetic.

b Find u_1 and d.

- Find the 37th term of the sequence.
- **d** State the first term of the sequence which is less than -200.
- **a** Show that the sequence 3, 12, 48, 192, is geometric.
 - **b** Find u_n and hence find u_9 .
- **3** Find the general term of the arithmetic sequence with $u_7 = 31$ and $u_{15} = -17$. Hence, find the value of u_{34} .
- **4** Write using sigma notation:

a 4+11+18+25+... for *n* terms **b** $\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+...$ for *n* terms.

5 Evaluate:

a $\sum_{k=1}^{8} \left(\frac{31-3k}{2} \right)$ **b** $\sum_{k=1}^{15} 50(0.8)^{k-1}$ **c** $\sum_{k=7}^{\infty} 5\left(\frac{2}{5} \right)^{k-1}$

- **6** How many terms of the series 11 + 16 + 21 + 26 + ... are needed to exceed a sum of 450?
- **7** £12500 is invested in an account which pays 8.25% p.a. compounded. Find the value of the investment after 5 years if the interest is compounded:
 - **a** half-yearly
- **b** monthly.
- **8** The sum of the first two terms of an infinite geometric series is 90. The third term is 24.
 - **a** Show that there are two possible series. Find the first term and the common ratio in each case.
 - **b** Show that both series converge and find their respective sums.
- **9** Seve is training for a long distance walk. He walks for 10 km in the first week, then each week thereafter he walks an additional 500 m. If he continues this pattern for a year, how far does Seve walk:
 - a in the last week
- **b** in total?
- **10 a** Under what conditions will the series $\sum_{k=1}^{\infty} 50(2x-1)^{k-1}$ converge? Explain your answer.
 - **b** Find $\sum_{k=1}^{\infty} 50(2x-1)^{k-1}$ if x = 0.3.