7

The graphs of $y=x^{2}-3 x$ and $y=2 x-x^{2}$ are illustrated.
a Without using technology, show that the graphs meet where $x=0$ and $x=2 \frac{1}{2}$.
b Find the maximum vertical separation between the curves for $0 \leqslant x \leqslant 2 \frac{1}{2}$.

8 Infinitely many rectangles may be inscribed within the right angled triangle shown alongside. One of them is illustrated.
a Let $\mathrm{AB}=x \mathrm{~cm}$ and $\mathrm{BC}=y \mathrm{~cm}$. Use similar triangles to find y in terms of x.
b Find the dimensions of rectangle ABCD of maximum area.

INVESTIGATION 4

What to do:

1 Suppose $a x^{2}+b x+c=0$ has roots p and q.
Prove that $p+q=\frac{-b}{a} \quad$ and $\quad p q=\frac{c}{a}$.
2 Suppose $2 x^{2}-5 x+1=0$ has roots p and q.
Without finding the values of p and q, find:
a $p+q$
b $p q$
c $p^{2}+q^{2}$
d $\frac{1}{p}+\frac{1}{q}$

3 Find all quadratic equations with roots which are:
a one more than the roots of $2 x^{2}-5 x+1=0$
\mathbf{b} the squares of the roots of $2 x^{2}-5 x+1=0$
c the reciprocals of the roots of $2 x^{2}-5 x+1=0$.

REVIEW SET 1A

NON-CALCULATOR

1 Consider the quadratic function $y=-2(x+2)(x-1)$.
a State the x-intercepts.
b State the equation of the axis of symmetry.
c Find the y-intercept.
d Find the coordinates of the vertex.
e Sketch the function.
2 Solve the following equations, giving exact answers:
a $3 x^{2}-12 x=0$
b $3 x^{2}-x-10=0$
c $x^{2}-11 x=60$

3 Solve using the quadratic formula:
a $x^{2}+5 x+3=0$
b $3 x^{2}+11 x-2=0$

4 Solve by 'completing the square': $x^{2}+7 x-4=0$
5 Use the vertex, axis of symmetry, and y-intercept to graph:
a $y=(x-2)^{2}-4$
b $y=-\frac{1}{2}(x+4)^{2}+6$

6 Find, in the form $y=a x^{2}+b x+c$, the equation of the quadratic whose graph:
a touches the x-axis at 4 and passes through $(2,12)$
b has vertex $(-4,1)$ and passes through $(1,11)$.
7 Find the maximum or minimum value of the relation $y=-2 x^{2}+4 x+3$ and the value of x at which this occurs.
8 Find the points of intersection of $y=x^{2}-3 x$ and $y=3 x^{2}-5 x-24$.
9 For what values of k does the graph of $y=-2 x^{2}+5 x+k$ not cut the x-axis?
10 Find the values of m for which $2 x^{2}-3 x+m=0$ has:
a a repeated root
b two distinct real roots
c no real roots.

11 The sum of a number and its reciprocal is $2 \frac{1}{30}$. Find the number.
12 Show that no line with a y-intercept of $(0,10)$ will ever be tangential to the curve with equation $y=3 x^{2}+7 x-2$.
13 The diagram shows a quadratic $y=x^{2}+m x+n$.

a Determine the values of m and n.
b Find k given that the graph passes through the point $(3, k)$.

REVIEW SET 1B

1 Consider the quadratic function $y=2 x^{2}+6 x-3$.
a Convert it to the form $y=a(x-h)^{2}+k$.
b State the coordinates of the vertex.
c Find the y-intercept.
d Sketch the graph of the function.
2 Solve:
a $(x-2)(x+1)=3 x-4$
b $2 x-\frac{1}{x}=5$

3 Draw the graph of $y=-x^{2}+2 x$.
4 Consider the quadratic function $y=-3 x^{2}+8 x+7$. Find the equation of the axis of symmetry, and the coordinates of the vertex.

5 Using the discriminant only, determine the nature of the solutions of:
a $2 x^{2}-5 x-7=0$
b $3 x^{2}-24 x+48=0$

6 a For what values of c do the lines with equations $y=3 x+c$ intersect the parabola $y=x^{2}+x-5$ in two distinct points?
b Choose one such value of c from part \mathbf{a} and find the points of intersection in this case.
7 Consider the quadratic function $y=2 x^{2}+4 x-1$.
a State the axis of symmetry.
b Find the coordinates of the vertex.
c Find the axes intercepts.
d Hence sketch the function.

8 An open square-based container is made by cutting 4 cm square pieces out of a piece of tinplate. If the volume of the container is $120 \mathrm{~cm}^{3}$, find the size of the original piece of tinplate.
9 Consider $y=-x^{2}-5 x+3$ and $y=x^{2}+3 x+11$.
a Solve for x : $-x^{2}-5 x+3=x^{2}+3 x+11$.
b Hence, or otherwise, determine the values of x for which $x^{2}+3 x+11>-x^{2}-5 x+3$.
10 Find the maximum or minimum value of the following quadratics, and the corresponding value of x :
a $y=3 x^{2}+4 x+7$
b $y=-2 x^{2}-5 x+2$

11600 m of fencing is used to construct 6 rectangular animal pens as shown.
a Show that the area A of each pen is

$$
A=x\left(\frac{600-8 x}{9}\right) \mathrm{m}^{2} .
$$

b Find the dimensions of each pen so that it has the maximum possible area.

c What is the area of each pen in this case?
12 Two different quadratic functions of the form $y=9 x^{2}-k x+4$ each touch the x-axis.
a Find the two values of k.
b Find the point of intersection of the two quadratic functions.

REVIEW SET 1C

1 Consider the quadratic function $y=\frac{1}{2}(x-2)^{2}-4$.
a State the equation of the axis of symmetry.
b Find the coordinates of the vertex.
c Find the y-intercept.
d Sketch the function.

2 Solve the following equations:
a $x^{2}-5 x-3=0$
b $2 x^{2}-7 x-3=0$

3 Solve the following using the quadratic formula:
a $x^{2}-7 x+3=0$
b $2 x^{2}-5 x+4=0$

4 Find the equation of the quadratic function with graph:
a

b

c

5 Use the discriminant only to find the relationship between the graph and the x-axis for:
a $y=2 x^{2}+3 x-7$
b $y=-3 x^{2}-7 x+4$

6 Determine whether the following quadratic functions are positive definite, negative definite, or neither:
a $y=-2 x^{2}+3 x+2$
b $y=3 x^{2}+x+11$

7 Find the equation of the quadratic function shown:

8 Find the y-intercept of the line with gradient -3 that is tangential to the parabola $y=2 x^{2}-5 x+1$.
9 For what values of k would the graph of $y=x^{2}-2 x+k \quad$ cut the x-axis twice?
10 Find the quadratic function which cuts the x-axis at 3 and -2 and which has y-intercept 24 . Give your answer in the form $y=a x^{2}+b x+c$.
11 For what values of m are the lines $y=m x-10 \quad$ tangents to the parabola $\quad y=3 x^{2}+7 x+2$?
12 The diagram shows the parabola $y=a(x+m)(x+n)$ where $m>n$.

a Find, in terms of m and n, the:
i coordinates of the x-intercepts A and B
ii equation of the axis of symmetry.
b State the sign of:
i the discriminant Δ
ii a.

13 a Determine the equation of:
i the quadratic function
ii the straight line.
b For what values of x is the straight line above the curve?

