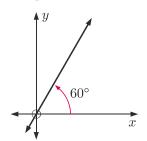
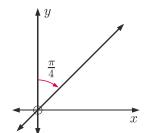

Example 17

■ Self Tutor

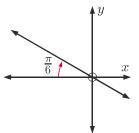
Find the equation of the given line:


The line has gradient $m = \tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$ and y-intercept 1.

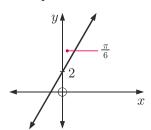
 \therefore the line has equation $y = \frac{1}{\sqrt{3}}x + 1$.


EXERCISE 8F

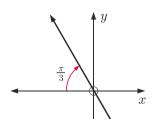
1 Find the equation of each line:


a

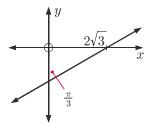
b



C



2 Find the equation of each line:


a

Ь

C

REVIEW SET 8A

NON-CALCULATOR

- **1** Convert these to radians in terms of π :
 - a 120°
- **b** 225°
- c 150°
- **d** 540°

- **2** Find the acute angles that would have the same:
 - a sine as $\frac{2\pi}{3}$

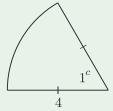
- **b** sine as 165°
- \bullet cosine as 276° .

- **3** Find:
 - a $\sin 159^{\circ}$ if $\sin 21^{\circ} \approx 0.358$
- **b** $\cos 92^{\circ}$ if $\cos 88^{\circ} \approx 0.035$
- $\cos 75^{\circ}$ if $\cos 105^{\circ} \approx -0.259$
- **d** $\sin(-133^{\circ})$ if $\sin 47^{\circ} \approx 0.731$.
- **4** Use a unit circle diagram to find:
 - a $\cos 360^{\circ}$ and $\sin 360^{\circ}$

- **b** $\cos(-\pi)$ and $\sin(-\pi)$.
- **5** Explain how to use the unit circle to find θ when $\cos \theta = -\sin \theta$, $0 \le \theta \le 2\pi$.
- **6** Find exact values for $\sin \theta$, $\cos \theta$, and $\tan \theta$ for θ equal to:
 - a $\frac{2\pi}{3}$

b $\frac{8\pi}{2}$

8 If $\cos \theta = \frac{3}{4}$ find the possible values of $\sin \theta$.


9 Evaluate:

- **a** $2\sin(\frac{\pi}{3})\cos(\frac{\pi}{3})$ **b** $\tan^2(\frac{\pi}{4}) 1$ **c** $\cos^2(\frac{\pi}{6}) \sin^2(\frac{\pi}{6})$

211

10 Given $\tan x = -\frac{3}{2}$ and $\frac{3\pi}{2} < x < 2\pi$, find: **a** $\sin x$ **b** $\cos x$.

11

Find the perimeter and area of the sector.

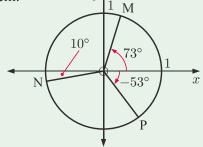
12 Suppose $\cos \theta = \frac{\sqrt{11}}{\sqrt{17}}$ and θ is acute. Find the exact value of $\tan \theta$.

REVIEW SET 8B CALCULATOR

1 Determine the coordinates of the point on the unit circle corresponding to an angle of:

- a 320°
- **b** 163°

2 Convert to radians to 4 significant figures:


- **b** 124.6°
- -142°

3 Convert these radian measurements to degrees, to 2 decimal places:

- **b** 1.46
- **d** -5.271

4 Determine the area of a sector of angle $\frac{5\pi}{12}$ and radius 13 cm.

5 Find the coordinates of the points M, N, and P on the unit circle.

6 Find the angle [OA] makes with the positive x-axis if the x-coordinate of the point A on the unit circle is -0.222.

7 Find all angles between 0° and 360° which have:

- **a** a cosine of $-\frac{\sqrt{3}}{2}$ **b** a sine of $\frac{1}{\sqrt{2}}$
- \bullet a tangent of $-\sqrt{3}$

8 Find θ for $0 \leqslant \theta \leqslant 2\pi$ if:

- **a** $\cos \theta = -1$ **b** $\sin^2 \theta = \frac{3}{4}$

9 Find the obtuse angles which have the same:

a sine as 47°

b sine as $\frac{\pi}{15}$

 \bullet cosine as 186°

10 Find the perimeter and area of a sector of radius 11 cm and angle 63°.

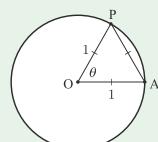
11 Find the radius and area of a sector of perimeter 36 cm with an angle of $\frac{2\pi}{3}$.

- **12** Find two angles on the unit circle with $0 \le \theta \le 2\pi$, such that:
 - a $\cos \theta = \frac{2}{3}$

 $\mathbf{b} \quad \sin \theta = -\frac{1}{4}$

 $\cot \theta = 3$

REVIEW SET 8C

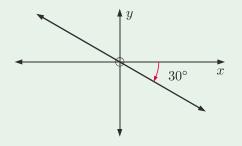

- 1 Convert these radian measurements to degrees:
 - a $\frac{2\pi}{5}$
- b $\frac{5\pi}{4}$

 $c \frac{7\pi}{9}$

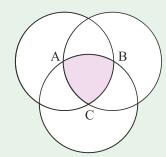
- d $\frac{11\pi}{6}$
- Illustrate the regions where $\sin \theta$ and $\cos \theta$ have the same sign.
- **3** Use a unit circle diagram to find:
 - a $\cos(\frac{3\pi}{2})$ and $\sin(\frac{3\pi}{2})$

- **b** $\cos(-\frac{\pi}{2})$ and $\sin(-\frac{\pi}{2})$
- Suppose $m = \sin p$, where p is acute. Write an expression in terms of m for:
 - a $\sin(\pi-p)$
- **b** $\sin(p+2\pi)$
- $\cos p$
- **d** $\tan p$

5


- **a** State the value of θ in:
 - i degrees
- ii radians.
- State the arc length AP.
- State the area of the minor sector OAP.
- **6** Without a calculator, evaluate $\tan^2(\frac{2\pi}{3})$.
- Show that $\cos(\frac{3\pi}{4}) \sin(\frac{3\pi}{4}) = -\sqrt{2}$.
- If $\cos \theta = -\frac{3}{4}$, $\frac{\pi}{2} < \theta < \pi$ find the exact value of:
 - a $\sin \theta$

b $\tan \theta$


 $\sin(\theta + \pi)$

- Without using a calculator, evaluate:
- **a** $\tan^2 60^\circ \sin^2 45^\circ$ **b** $\cos^2(\frac{\pi}{4}) + \sin(\frac{\pi}{2})$ **c** $\cos(\frac{5\pi}{3}) \tan(\frac{5\pi}{4})$
- **10** Simplify:
 - a $\sin(\pi-\theta)-\sin\theta$
- **b** $\cos\theta \tan\theta$

11

- **a** Find the equation of the line drawn.
- Find the exact value of k given the point (k, 2)lies on the line.
- **12** Three circles with radius r are drawn as shown, each with its centre on the circumference of the other two circles. A, B and C are the centres of the three circles. Prove that an expression for the area of the shaded region is $A = \frac{r^2}{2}(\pi - \sqrt{3})$.

