1. (a) $x^{2}-3 x-10=(x-5)(x+2)$
(M1)(A1) (C2)
(b) $x^{2}-3 x-10=0 \Rightarrow(x-5)(x+2)=0$

$$
\begin{equation*}
\Rightarrow x=5 \text { or } x=-2 \tag{M1}
\end{equation*}
$$

2. (a) For a reasonable attempt to complete the square, (or expanding)
e.g. $3 x^{2}-12 x+11=3\left(x^{2}-4 x+4\right)+11-12$
$f(x)=3(x-2)^{2}-1($ accept $h=2, k=1)$
A1A1 N3
(b) METHOD 1

Vertex shifted to $(2+3,-1+5)=(5,4) \quad$ M1
so the new function is $3(x-5)^{2}+4$ (accept $p=5, q=4$)
A1A1 N2

METHOD 2

$g(x)=3((x-3)-h)^{2}+k+5=3((x-3)-2)^{2}-1+5$
M1
$=3(x-5)^{2}+4($ accept $p=5, q=4)$
A1A1 N2
3. (a) $p=-\frac{1}{2}, q=2$
(A1)(A1) (C2)
or vice versa
(b) By symmetry C is midway between p, q

Note: This (M1) may be gained by implication.
$\Rightarrow x$-coordinate is $\frac{-1 / 2+2}{2}=\frac{3}{4}$
4. (a) $h=3$
(A1)

$$
\begin{equation*}
k=2 \tag{A1}
\end{equation*}
$$

(b) $\quad f(x)=-(x-3)^{2}+2$

$$
\begin{align*}
& =-x^{2}+6 x-9+2 \quad \text { (must be a correct expression) } \tag{A1}\\
& =-x^{2}+6 x-7 \tag{AG}
\end{align*}
$$

(c) $f^{\prime}(x)=-2 x+6$
(A2) 2
(d) (i) tangent gradient $=-2$
gradient of $L=\frac{1}{2}$
(A1)
(N2) 2
(ii) EITHER
equation of L is $y=\frac{1}{2} x+c$

$$
\begin{equation*}
c=-1 . \tag{M1}
\end{equation*}
$$

$y=\frac{1}{2} x-1$
OR
$y-1=\frac{1}{2}(x-4)$
(A2)
(N2) 2
(iii) EITHER

$$
\begin{align*}
-x^{2}+6 x-7= & \frac{1}{2} x-1 \tag{M1}\\
2 x^{2}-11 x+12 & =0 \quad(\text { may be implied }) \tag{A1}\\
(2 x-3)(x-4) & =0 \quad \text { (may be implied) } \tag{A1}\\
x & =1.5
\end{align*}
$$

OR
$-x^{2}+6 x-7=\frac{1}{2} x-1$ (or a sketch)
$x=1.5$
(A3)
(N3) 4
(N3) 8
5. Discriminant $\Delta=b^{2}-4 a c\left(=(-2 k)^{2}-4\right)$

$$
\begin{equation*}
\Delta>0 \tag{M2}
\end{equation*}
$$

Note: Award (M1)(M0) for $\Delta \geq 0$.
$(2 k)^{2}-4>0 \Rightarrow 4 k^{2}-4>0$

EITHER

$$
\begin{equation*}
4 k^{2}>4\left(k^{2}>1\right) \tag{A1}
\end{equation*}
$$

OR

$$
\begin{equation*}
4(k-1)(k+1)>0 \tag{A1}
\end{equation*}
$$

OR

$$
\begin{equation*}
(2 k-2)(2 k+2)>0 \tag{A1}
\end{equation*}
$$

THEN

$k<-1$ or $k>1$
(A1)(A1) (C6)
Note: Award (A1) for $-1<k<1$.
6. $4 x^{2}+4 k x+9=0$

Only one solution $\Rightarrow b^{2}-4 a c=0$
$16 k^{2}-4(4)(9)=0$
$k^{2}=9$
$k= \pm 3$
But given $k>0, k=3$

OR

One solution $\Rightarrow\left(4 x^{2}+4 k x+9\right)$ is a perfect square
$4 x^{2}+4 k x+9=(2 x \pm 3)^{2}$ by inspection
given $k>0, k=3$
7. (a) $a=3, b=4$

$$
\begin{equation*}
f(x)=(x-3)^{2}+4 \tag{A1}
\end{equation*}
$$

A1 (C2)
(b) $y=(x-3)^{2}+4$

METHOD 1

$$
\begin{align*}
& x=(y-3)^{2}+4 \tag{M1}\\
& x-4=(y-3)^{2} \\
& \sqrt{x-4}=y-3 \tag{M1}\\
& y=\sqrt{x-4}+3
\end{align*}
$$

(A1) 3

METHOD 2

$$
\begin{align*}
& y-4=(x-3)^{2} \tag{M1}\\
& \sqrt{y-4}=x-3 \tag{M1}\\
& \sqrt{y-4}+3=x \\
& y=\sqrt{x-4}+3 \tag{A1}\\
& \Rightarrow f^{-1}(x)=\sqrt{x-4}+3
\end{align*}
$$

(c) $x \geq 4$
(A1)(C1)
8. $(7-x)(1+x)=0$
$\Leftrightarrow x=7$ or $x=-1$
$B: x=\frac{7+-1}{2}=3$;

$$
y=(7-3)(1+3)=16
$$

$(\mathrm{A} 1)(\mathrm{C} 1)(\mathrm{C} 1)$
(A1)
(A1) (C2)

[4]

9. (a) $f(x)=x^{2}-6 x+14$

$$
\begin{align*}
& f(x)=x^{2}-6 x+9-9+14 \tag{M1}\\
& f(x)=(x-3)^{2}+5 \tag{M1}
\end{align*}
$$

(b) Vertex is $(3,5)$
(A1)(A1)
10.

$$
\begin{aligned}
& q=5 \\
& k=3, p=4
\end{aligned}
$$

(A1) (C1)
(A3) (C3)
11. One solution \Rightarrow discriminant $=0$

$$
\begin{align*}
& 3^{2}-4 k=0 \tag{M2}\\
& \qquad \begin{array}{l}
9=4 k \\
k=\frac{9}{4}\left(=2 \frac{1}{4}, 2.25\right)
\end{array}
\end{align*}
$$

Note: If candidates correctly solve an incorrect equation, award M2 A0 A2(ft), if they have the first line or equivalent, otherwise award no marks.
12. (a) $2 x^{2}-8 x+5=2\left(x^{2}-4 x+4\right)+5-8$
(M1)
(A1)(A1)(A1)
(b) Minimum value of $2(x-2)^{2}=0$ (or minimum value occurs when $x=2$) (Ml)
\Rightarrow Minimum value of $f(x)=-3$
(A1) (C2)
OR
Minimum value occurs at $(2,-3)$
(M1)(A1) (C2)
[6]
13. (a) (i) $h=-1$
(A2) (C2)
(ii) $k=2$
(A1) (C1)

$$
\text { (b) } \begin{array}{r}
\mathrm{a}(1+1)^{2}+2=0 \\
a=-0.5
\end{array}
$$

(A1) (C3)
[6]
14. $y=(x+2)(x-3)$

$$
=x^{2}-x-6
$$

Therefore, $0=4-2 p+q$
(M1)
(A1)
$(\mathrm{A} 1)(\mathrm{A} 1)(\mathrm{C} 2)(\mathrm{C} 2)$

OR

$$
\begin{equation*}
y=x^{2}-x-6 \tag{C3}
\end{equation*}
$$

OR

$$
\begin{align*}
& 0=4-2 p+q \tag{A1}\\
& 0=9+3 p+q \tag{A1}\\
& p=-1, q=-6
\end{align*}
$$

$(\mathrm{A} 1)(\mathrm{A} 1)(\mathrm{C} 2)(\mathrm{C} 2)$

