AP Calculus AB
Practice Exam I

Name: \qquad
Block: \qquad Date: \qquad

A GRAPHING CALCULATOR MAY BE REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS IN THIS SECTION OF THE EXAM.

Part I: Multiple Choice. Determine which of the given choices is the best choice. Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which $f(x)$ is a real number.
29. $\int_{0}^{\pi / 4} \sin x d x+\int_{-\pi / 4}^{0} \cos x d x=$
A. $-\sqrt{2}$
B. -1
C. 0
D. 1
E. $\sqrt{2}$
30. Boats A and B leave the same place at the same time. Boat A heads due north at $12 \mathrm{~km} / \mathrm{hr}$. Boat B heads due east at $18 \mathrm{~km} / \mathrm{hr}$. After 2.5 hours, how fast is the distance between the boats increasing (in $\mathrm{km} / \mathrm{hr}$)?
A. 21.63
B. 31.20
C. 75.00
D. 9.84
E. 54.08
31. $\lim _{h \rightarrow 0} \frac{\tan \left(\frac{\pi}{6}+h\right)-\tan \frac{\pi}{6}}{h}=$
A. $\frac{\sqrt{3}}{3}$
B. $\frac{4}{3}$
C. $\sqrt{3}$
D. 0
E. $\frac{3}{4}$
32. If $\int_{30}^{100} f(x) d x=A$ and $\int_{50}^{100} f(x) d x=B$, then $\int_{30}^{50} f(x) d x=$
A. $A+B$
B. $A-B$
C. 0
D. $B-A$
E. 20
33. If $f(x)=3 x^{2}-x$, and $g(x)=f^{-1}(x)$, then $g^{\prime}(10)$ could be
A. 59
B. $\frac{1}{59}$
C. $\frac{1}{10}$
D. 11
E. $\frac{1}{11}$
34. The graph of $y=x^{3}-5 x^{2}+4 x+2$ has a local minimum at
A. $(0.46,2.87)$
B. $(0.46,0)$
C. $(2.87,-4.06)$
D. $(4.06,2.87)$
E. $(1.66,-0.59)$
35. The volume generated by revolving about the y-axis the region enclosed by the graphs $y=9-x^{2}$ and $y=9-3 x$, for $0 \leq x \leq 2$, is
A. -8π
B. 4π
C. 8π
D. 24π
E. 48π
36. The average value of the function $f(x)=\ln ^{2} x$ on the interval $[2,4]$ is
A. -1.204
B. 1.204
C. 2.159
D. 2.408
E. 8.636
37. $\frac{d}{d x} \int_{0}^{3 x} \cos (t) d t=$
A. $\sin 3 x$
B. $-3 \sin 3 x$
C. $\cos 3 x$
D. $3 \sin 3 x$
E. $3 \cos 3 x$
38. If the definite integral $\int_{1}^{3}\left(x^{2}+1\right) d x$ is approximated by using the Trapezoid Rule with $n=4$, the error is
A. 0
B. $\frac{7}{3}$
C. $\frac{1}{12}$
D. $\frac{65}{6}$
E. $\frac{97}{3}$
39. The radius of a sphere is increasing at a rate proportional to itself. If the radius is 4 initially, and the radius is 10 after two seconds, what will the radius be after three seconds?
A. 62.50
B. 13.00
C. 15.81
D. 16.00
E. 25.00
40. Use differentials to approximate the change in volume of a sphere when the radius is increased from 10 to 10.02 cm .
A. $4,213.973$
B. $1,261.669$
C. $1,256.637$
D. 25.233
E. 25.133
41. $\int \ln 2 x d x=$
A. $\frac{\ln 2 x}{x}+C$
B. $\frac{\ln 2 x}{2 x}+C$
C. $x \ln x-x+C$
D. $x \ln 2 x-x+C$
E. $2 x \ln 2 x-2 x+C$
42. If the function $f(x)$ is differentiable and $f(x)=\left\{\begin{array}{ll}a x^{3}-6 x ; & x \leq 1 \\ b x^{2}+4 ; & x>1\end{array}\right.$, then $a=$
A. 0
B. 1
C. -14
D. -24
E. 26
43. Two particles leave the origin at the same time and move along the y-axis with their respective positions determined by the functions $y_{1}=\cos 2 t$ and $y_{2}=4 \sin t$ for $0<t<6$. For how many values of t do the particles have the same acceleration?
A. 0
B. 1
C. 2
D. 3
E. 4
44. Find the distance traveled in the first four seconds, for a particle whose velocity is given by $v(t)=7 e^{-t^{2}}$, where t stands for time.
A. 0.976
B. 6.204
C. 6.359
D. 12.720
E. 7.000
45. $\int \tan ^{6} x \sec ^{2} x d x=$
A. $\frac{\tan ^{7} x}{7}+C$
B. $\frac{\tan ^{7} x}{7}+\frac{\sec ^{3} x}{3}+C$
C. $\frac{\tan ^{7} x \sec ^{3} x}{21}+C$
D. $7 \tan ^{7} x+C$
E. $\frac{2}{7} \tan ^{7} x \sec x+C$

