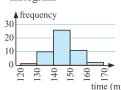
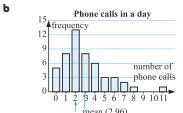

3 a column graph



b column graph

time (min)

e histogram


20 Seedling height Ь frequency 40 30 30 58.33%C i 1218 d 512 20 10 0 ► mm 300 325 350 375 400 425 450 5 a 140 b 65 c $\div 53.6\%$

EXERCISE 18B.1

- **1 a** i 5.61 ii 6 iii 6 **b** i 16.3 ii 17 iii 18 **c** i 24.8 ii 24.9 iii 23.5
 - **d** i 128.6 ii 128 iii 115 and 127
- **2** a A:6.46 B:6.85 b A:7 B:7
 - **c** The data sets are the same except for the last value, and the last value of A is less than the last value of B, so the mean of A is less than the mean of B.
 - **d** The middle value of the data sets is the same, so the median is the same.
- **3** a mean: \$29 300, median: \$23 500, mode: \$23 000
 - **b** The mode is the lowest value, so does not take the higher values into account.
 - No, since the data is positively skewed, the median is not in the centre.
- **4 a** mean: 3.3, median: 0, mode: 0
 - **b** The data is very positively skewed so the median is not in the centre.
 - The mode is the lowest value so does not take the higher values into account.
 - **d** yes, 21 and 42 e no
- **5 a** 44 **b** 44 **c** 40.2 **d** increase mean to 40.3 **6** 116 **7** 3144 km **8** \$185604 **9** x = 15 **10** a = 5 **11** 37
- **12 a** 1280 km **b** 516 km **c** 224.5 km **13** 14.77
- **14** 27.3 **15** 9 and 7

EXERCISE 18B.2

- **1 a** 1 **b** 1 **c** 1.43
- **2 a** i 2.96 ii 2 iii 2

positively skewed with data value 11 as an outlier

The mean takes into account the larger numbers of phone calls. the mean

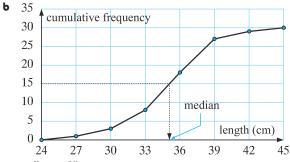
mode, median (2) mean (2.96)

3	a	Donation	Frequency
		1	7
		2	9
		3	2
		4	4

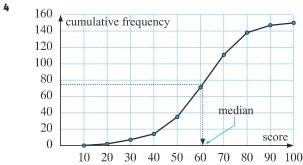
b 30
c i \$2.90
ii \$2
iii \$2
d the mode

4 a i 49 ii 49 iii 49.03 b no

- **c** The sample of only 30 is not large enough. The company could have won its case by arguing that a larger sample would have found an average of 50 matches per box.
- a i 2.61 ii 2 iii 2 b This school has more children per family than the average Australian family.
 c positive
 d The mean is larger than the median and the mode.
- **a** i 69.1 ii 67 iii 73 **b** i 5.86 ii 5.8 iii 6.7
- 7 **a i** 5.63 **ii** 6 **iii** 6 **b i** 6.79 **ii** 7 **iii** 7
- c the mean d yes
- **8** Team A: 91.25, Team B: 91.75, ∴ Team B
- **9 a** 49 **b** 144 and 147 (bi-modal) **c** 25
- **10 a** 29 **b** 107 **c** 149.5
- **11 a** 0 **b** 1.7 **c** 1.5 **12** in 81.2 mm
- a mean = \$163770, median = \$147200 (differ by \$16570)
 i mean selling price ii median selling price
- **14** mean $\div 34.6$, mode = 35, median = 35 **15** $\div 17.7$
- **16 a** $\div 70.9 \ \text{g}$ **b** $\div 210.1 \ \text{g}$ **c** $139.25 \ \text{g}$ **17** $10.1 \ \text{cm}$
- **18** 17.25 goals per game **19** 6 and 12
- **20 a** mean for A = 50.8, mean for B = 49.9
 - **b** No, as to the nearest match, A is 51 and B is 50.
- **22 a i** \$31500 **ii** \$28000 **iii** \$33300
 - **b** The mean as it is the highest measure.


EXERCISE 18B.3

- **1 a** $\overline{x} = 13.5$ **b** $\overline{x} = 50.5$ **2** 31.7
- **3 a** i 13.6 goals **b** i 13.5 goals ii 13.6 goals
 - The approximations are about the same. $4 \div 495 \text{ mm}$
- **5 a** 70 **b** $\doteqdot 411\,000$ litres, i.e., $\doteqdot 411\,\mathrm{kL}$ **c** $\doteqdot 5870\,\mathrm{L}$
- **6 a** 125 people **b** \doteqdot 119 people **c** $\frac{3}{25}$ **d** 137 marks
- **7 a** 95 **b** 59.6 kg **c** 25 **d** 36.8% **e** $\frac{9}{19}$ or 47.4%

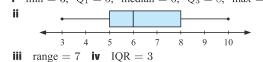

EXERCISE 180

- **1 a** 2 **b** 8 **2** 1 error
- 3 a

Lengin $(x cm)$	Frequency	C. Jrequency
$24 \leqslant x < 27$	1	1
$27 \leqslant x < 30$	2	3
$30 \le x < 33$	5	8
$33 \le x < 36$	10	18
$36 \leqslant x < 39$	9	27
$39 \le x < 42$	2	29
$42 \leqslant x < 45$	1	30

- median = 35 cm
- **d** actual median = 34.5, i.e., a good approximation

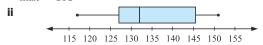
- **a** $\div 61$ students **b** $\div 91$ students **c** $\div 76$ students
- **d** 24 (or 25) students **e** 76 marks
- 5 a 8 b i 40 ii 40
- **a** 28.8 min **b** 35 **c** 26.5 min
- a 26 years b 41.5% c i 0.556 ii 0.0287
- **a** 2270 h **b** 69.3% **c** 62 or 63 **d** 0.0854
- **a** 47.8 m **b** 12 or 13 **c** 50 or 51 **d** 35 **e** 0.0733

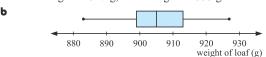

EXERCISE 18D.1

- - **b** i 17.5 ii $Q_1 = 15$, $Q_3 = 19$ iii 14 iv
- **a** median = 2.45, $Q_1 = 1.45$, $Q_3 = 3.8$
 - **b** range = 5.2, IQR = 2.35
 - c i greater than 2.45 min ii less than 3.8 min **III** The minimum waiting time was 0 minutes and the maximum waiting time was 5.2 minutes. The waiting times were spread over 5.2 minutes.
- **a** 3 **b** 42 **c** 20 **d** 13 **e** 29 **f** 39 **g** 16
- **a** i 124 cm ii $Q_1 = 116 \text{ cm}, Q_3 = 130 \text{ cm}$
 - **b** i 124 cm ii 130 cm tall
 - **c** i 29 cm ii 14 cm **d** over 14 cm
- a i 7 ii 6 iii 5 iv 6.5 v 1.5

b i 10 ii 7 iii 6 iv 8 v 2

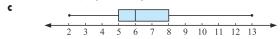
EXERCISE 18D.2


- 1 a i 35 ii 78 iii 13 iv 53 v 26 b i 65 ii 27
- **a** was 98 **b** was 25
 - \mathbf{c} greater than or equal to 70 \mathbf{d} at least 85 marks
 - e between 55 and 85 f 73 g 30
- **3 a** i min = 3, $Q_1 = 5$, median = 6, $Q_3 = 8$, max = 10

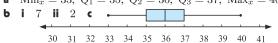

b i min = 0, $Q_1 = 4$, median = 7, $Q_3 = 8$, max = 9

- iii range = 9 iv IQR = 4
- \bullet i min = 117, $Q_1 = 127$, median = 132, $Q_3 = 145.5$, max = 151

- iii range = 34 iv IQR = 18.5
- **a** median = 905 g, $Q_1 = 899$ g, $Q_3 = 913$ g, max weight = 927 g, min weight = 883 g

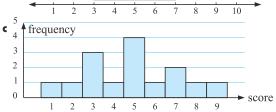


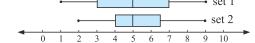
- **c** i IQR = 14 g ii range = 44 g
- **d** i at least 905 g ii 25% of the loaves
 - iii spread over 14 g
 - iv a weight of 899 g or less
- a little negatively skewed


5

a	Statistic	Year 9	Year 12
	min value	1	6
	Q_1	5	10
	median	7.5	14
	Q_3	10	16
	max value	12	17.5

- **b** i Year 9: 11, Year 12: 11.5
 - **ii** Year 9: 5, Year 12: 6
- c i true ii true
- **6 a** median = 6, $Q_1 = 5$, $Q_3 = 8$ **b**


a $Min_x = 33$, $Q_1 = 35$, $Q_2 = 36$, $Q_3 = 37$, $Max_x = 40$


- **8 a** 10 **b** $\div 28.3\%$ **c** 7 cm **d** IQR $\div 2.6$ cm
 - 10 cm, which means that 90% of the seedlings have a height of 10 cm or less.
- 27 min **b** 29 min **c** $31\frac{1}{2}$ min **d** $IQR \neq 4\frac{1}{2}$ min **e** 28 min 10 sec
- **10 a** 480 **b** 120 marks **c** 84 **d** IQR $\stackrel{.}{=}$ 28 **e** 107 marks

EXERCISE 18E.1

1 a $\overline{x} \doteqdot 4.87$, $\text{Min}_x = 1$, $Q_1 = 3$, $Q_2 = 5$, $Q_3 = 7$, $\text{Max}_x = 9$

d $\overline{x} \doteq 5.24$, $Min_x = 2$, $Q_1 = 4$, $Q_2 = 5$, $Q_3 = 6.5$,

