- **7** Find a, b and c if f(0) = 5, f(-2) = 21 and f(3) = -4for $f(x) = ax^2 + bx + c$.
- 8 For each of the following containers draw a 'depth v time' graph as water is added.

- 9 Consider $f(x) = \frac{1}{x^2}$
 - a For what value of x is f(x) meaningless?
 - **b** Sketch the graph of this function using technology.
 - State the domain and range of the function.
- 10 If f(x) = 2x 3 and $g(x) = x^2 + 2$, find in simplest form:

 - a f(g(x)) b g(f(x))
- 11 If f(x) = 1 2x and $g(x) = \sqrt{x}$, find in simplest form: **a** $(f \circ g)(x)$ **b** $(g \circ f)(x)$
- 12 Find an f and a g function given that:

 - **a** $f(g(x)) = \sqrt{1-x^2}$ **b** $g(f(x)) = \left(\frac{x-2}{x+1}\right)^2$

REVIEW SET 1B

- **1** If f(x) = 5 2x, find **a** f(0) **b** f(5) **c** f(-3) **d** $f(\frac{1}{2})$

- 2 If $g(x) = x^2 3x$, find in simplest form **a** g(x+1) **b** $g(x^2-2)$
- **3** For each of the following functions f(x) find $f^{-1}(x)$:

 - **a** f(x) = 7 4x **b** $f(x) = \frac{3 + 2x}{5}$
- 4 For each of the following graphs, find the domain and range.

5 Copy the following graphs and draw the graph of each inverse function:

a

b

- **6** Find $f^{-1}(x)$ given that f(x) is:
- 4x + 2
- $\frac{3-5x}{4}$
- **7** Copy the following graphs and draw the graph of each inverse function:

a

b

- 8 Given f(x) = 2x + 11 and $g(x) = x^2$, find $(g \circ f^{-1})(3)$.
- Consider $x \mapsto 2x 7$.
 - a On the same set of axes graph y = x, f and f^{-1} .
 - **b** Find $f^{-1}(x)$ using coordinate geometry.
 - Find $f^{-1}(x)$ using variable interchange.
- **10** a Sketch the graph of $g: x \mapsto x^2 + 6x + 7$.
 - **b** Explain why g for $x \le -3$ has an inverse function g^{-1} .
 - Find algebraically, the equation of g^{-1} .
 - d Sketch the graph of g^{-1} .
- 11 Given $h: x \mapsto (x-4)^2 + 3$ where $x \ge 4$, find the defining equation of h^{-1} .
- 12 Given $f: x \longmapsto 3x+6$ and $h: x \longmapsto \frac{x}{3}$, show that $(f^{-1} \circ h^{-1})(x) = (h \circ f)^{-1}(x)$.