Normal Distribution Practice

- A random variable X is distributed normally with a mean of 20 and variance 9. 1.
 - Find P(X≤24.5). normal cdf (-9999, 24.5, 20, 3) = .933
- (3)

- (b) Let $P(X \le k) = 0.85$.
 - (i) Represent this information on the following diagram.

(ii) Find the value of k.

- (Total 8 marks)
- 2. Let the random variable X be normally distributed with mean 25, as shown in the following diagram.

The shaded region between 25 and 27 represents 30 % of the distribution.

Find P(X > 27). - . 2 (a)

(2)

Find the standard deviation of X.

from part a,
$$P(\chi \angle 27) = .8$$

(Total 7 marks)

- 3. A random variable X is distributed normally with mean 450 and standard deviation 20.
 - Find P(X≤475). normal cdf (-9999, 475, 450, 20) = .894
 - Given that P(X > a) = 0.27, find a. (b)

$$P(\chi k, a) = 0.27$$
, find a.
 $P(\chi k, a) = .73$ inv Norm $(.73, 450, 20) = 462$ (4)
(Total 6 marks)

(2)

- 4. Let X be normally distributed with mean 100 cm and standard deviation 5 cm.
 - (a) On the diagram below, shade the region representing P(X > 105).

- (b) Given that P(X < d) = P(X > 105), find the value of d. d = 95
- (c) Given that P(X>105)=0.16 (correct to two significant figures), find P(d< X<105).

 (2) (Total 6 marks)
- 5. A box contains a large number of biscuits. The weights of biscuits are normally distributed with mean 7 g and standard deviation 0.5 g.
 - (a) One biscuit is chosen at random from the box. Find the probability that this biscuit
 - (i) weighs less than 8 g; normal cdf(-9999, 8,7,.5)= .977
 - (ii) weighs between 6 g and 8 g. normal cdf (6, 8, 7, .5) = .954 (4)
 - (b) Five percent of the biscuits in the box weigh less than d grams.
 - (i) Copy and complete the following normal distribution diagram, to represent this information, by indicating d, and shading the appropriate region.

- (ii) Find the value of d. inv Norm (.05, 7, .5) = (6.18)
- (c) The weights of biscuits in another box are normally distributed with mean μ and standard deviation 0.5 g. It is known that 20% of the biscuits in this second box weigh less than 5 g.

Find the value of μ .

$$P(\chi L5) = .20$$

 $inv Norm (.20, 0, 1) = -.842 (z-sore)$
 $-.842 = 5-\mu$ (Total 13 marks)

5.42 = M

(5)

(2)

- 6. It is claimed that the masses of a population of lions are normally distributed with a mean mass of 310 kg and a standard deviation of 30 kg.
 - Calculate the probability that a lion selected at random will have a mass of 350 kg or more. (a) normal cdf (350, 9999, 310, 30) = 091 (2)

The probability that the mass of a lion lies between a and b is 0.95, where a and b are symmetric about the mean. Find the value of a and of b

$$P(\chi(a) = .025)$$

 $invNorm(.025, 310, 30)$
 $= 251$

P(
$$\chi$$
La) = .025
invNorm(.025, 310, 30)
= 251
So α = 251
So β = 369
(3)
P(χ Lb) = .975
invNorm(.975, 310, 30)
= 369
So β = 369

7. The heights of certain flowers follow a normal distribution. It is known that 20% of these flowers ~ P(x 4 3) = . 20

have a height less than 3 cm and 10% have a height greater than 8 cm. Find the value of the mean μ and the standard deviation σ . Lyor P($\chi < 8$) = .90 (Total in/ Norm (.20,0,1) = -842 -> -842=3 (Total 6 marks) inv Norm (.90,0,1) = 1.282

- 8. The heights of trees in a forest are normally distributed with mean height 17 metres. One tree is selected at random. The probability that a selected tree has a height greater than 24 metres is 0.06. $\rightarrow p(\chi > 24)$. P(x < 24)=.94
 - (a) Find the probability that the tree selected has a height less than 24 metres. P(x424) = 1 - .06 = .94

- The probability that the tree has a height less than D metres is 0.06. Find the value of D. P(XLD)=.06
 - A woodcutter randomly selects 200 trees. Find the expected number of trees whose height lies between 17 metres and 24 metres 1-2(.06) = .88 4 P(174x424) (Total 9 marks)

$$E(x) = 200(.44)$$
= 88

(2)

(3)

(4)

The scores of a test given to students are normally distributed with a mean of 21. 80 % of the students have scores less than 23.7.
$$P(\chi \angle 23.7) = .80$$

(a) Find the standard deviation of the scores.

$$|NOrm(.80, 200, i)| = .842 (2-score)$$
 (3)
 $.842 = 23.7-21$, $\sigma = 3.21$

A student is chosen at random. This student has the same probability of having a score less than 25.4 as having a score greater than b.

(ii) Find the value of b.

(4) (Total 7 marks)

10. The heights of certain plants are normally distributed. The plants are classified into three categories.

The shortest 12.92% are in category A.

The tallest 10.38% are in category C.

All the other plants are in category B with heights between r cm and t cm.

(a) Complete the following diagram to represent this information.

(2)

(b) Given that the mean height is 6.84 cm and the standard deviation 0.25 cm, find the value of r and of t.

$$P(X < r) = .1292$$

inv Norm (.1292, 6.84, .25)
 $r = 6.56$

(Total 7 marks)

$$P(x>t) = .1038$$

so $P(x
 $invNorm(.8962, 6.84, .25)$
 $t = 7.16$$