1. A random variable X is distributed normally with a mean of 20 and variance 9 .
(a) Find $\mathrm{P}(X \leq 24.5)$.
(b) Let $\mathrm{P}(X \leq k)=0.85$.
(i) Represent this information on the following diagram.

(ii) Find the value of k.
2. Let the random variable X be normally distributed with mean 25 , as shown in the following diagram.

The shaded region between 25 and 27 represents 30% of the distribution.
(a) Find $\mathrm{P}(X>27)$.
(b) Find the standard deviation of X.
3. A random variable X is distributed normally with mean 450 and standard deviation 20.
(a) Find $\mathrm{P}(X \leq 475)$.
(b) Given that $\mathrm{P}(X>a)=0.27$, find a.
4. Let X be normally distributed with mean 100 cm and standard deviation 5 cm .
(a) On the diagram below, shade the region representing $\mathrm{P}(X>105)$.

(b) Given that $\mathrm{P}(X<d)=\mathrm{P}(X>105)$, find the value of d.
(c) Given that $\mathrm{P}(X>105)=0.16$ (correct to two significant figures), find $\mathrm{P}(d<X<105)$.
(Total 6 marks)
5. A box contains a large number of biscuits. The weights of biscuits are normally distributed with mean 7 g and standard deviation 0.5 g .
(a) One biscuit is chosen at random from the box. Find the probability that this biscuit
(i) weighs less than 8 g ;
(ii) weighs between 6 g and 8 g .
(b) Five percent of the biscuits in the box weigh less than d grams.
(i) Copy and complete the following normal distribution diagram, to represent this information, by indicating d, and shading the appropriate region.

(ii) Find the value of d.
(c) The weights of biscuits in another box are normally distributed with mean μ and standard deviation 0.5 g . It is known that 20% of the biscuits in this second box weigh less than 5 g .

Find the value of μ.
6. It is claimed that the masses of a population of lions are normally distributed with a mean mass of 310 kg and a standard deviation of 30 kg .
(a) Calculate the probability that a lion selected at random will have a mass of 350 kg or more.
(b) The probability that the mass of a lion lies between a and b is 0.95 , where a and b are symmetric about the mean. Find the value of a and of b.
7. The heights of certain flowers follow a normal distribution. It is known that 20% of these flowers have a height less than 3 cm and 10% have a height greater than 8 cm .

Find the value of the mean μ and the standard deviation σ.
(Total 6 marks)
8. The heights of trees in a forest are normally distributed with mean height 17 metres. One tree is selected at random. The probability that a selected tree has a height greater than 24 metres is 0.06 .
(a) Find the probability that the tree selected has a height less than 24 metres.
(b) The probability that the tree has a height less than D metres is 0.06 .

Find the value of D.
(c) A woodcutter randomly selects 200 trees. Find the expected number of trees whose height lies between 17 metres and 24 metres.
9. The scores of a test given to students are normally distributed with a mean of 21.
80% of the students have scores less than 23.7.
(a) Find the standard deviation of the scores.

A student is chosen at random. This student has the same probability of having a score less than 25.4 as having a score greater than b.
(b) (i) Find the probability the student has a score less than 25.4.
(ii) Find the value of b.
(Total 7 marks)
10. The heights of certain plants are normally distributed. The plants are classified into three categories.

The shortest 12.92% are in category A.
The tallest 10.38% are in category C .
All the other plants are in category B with heights between $r \mathrm{~cm}$ and $t \mathrm{~cm}$.
(a) Complete the following diagram to represent this information.

(b) Given that the mean height is 6.84 cm and the standard deviation 0.25 cm , find the value of r and of t.

