Sequences and Series

- 1. The Acme insurance company sells two savings plans, Plan A and Plan B. For Plan A, an investor starts with an initial deposit of \$1000 and increases this by \$80 each month, so that in the second month, the deposit is \$1080, the next month it is \$1160, and so on. For Plan B, the investor again starts with \$1000 and each month deposits 6% more than the previous month.
 - a) Write down the amount of money invested under Plan B in the second and third months. Give your answers to parts (b) and (c) correct to the nearest dollar.
 - b) Find the amount of the 12th deposit for each Plan.
 - c) Find the total amount of money invested during the first 12 months
 - i) under Plan A;
 - ii) under Plan B.
- 2. (no calculator) Given that 24, b, c, are the first three terms of an arithmetic sequence, with non-zero common difference, and that 24, c, b, are the first three terms of a geometric sequence, find b and c.
- 3. (no calculator) In an arithmetic sequence, the first term is -2, the fourth term is 16, and the n^{th} term is 11998.
 - a) Find the common difference d.
 - b) Find the value of n.

Exponents and Logarithms

- 4. Solve for real x:
 - a) $\log_8 x = 3^{-1}$ b) $8^{-x} = \left(\frac{1}{4}\right)^3$ c) $\log_{27} x = 1 \log_{27} x 0.4$ d) $2^x = 7^x 1$
 - e) $\log_9 81 + \log_9 \left(\frac{1}{9}\right) + \log_9 3 = \log_9 x$
- 5. The number of radioactive atoms N of a particular material present at time t years may be written in the form $N = 5000 e^{-kt}$, where 5000 is the number of atoms present when t = 0, and k is a positive constant. It is found that N = 2500 when t = 5 years.
 - a) Determine the value of k.
 - b) At what value of t will N = 50?

Binomial Theorem (Pascal's triangle, combinations)

- 6. In one of the terms in the expansion of $x^3 3y^2$, the powers of x and y will be identical. Find this term, giving your answer in its simplest form.
- 7. (no calculator) Find the coefficient of y^3 in the expansion of $(3 2y)^5$, simplifying your answer as much as possible.
- 8. Consider the expansion of $\left(3x^2 \frac{1}{x}\right)^9$.
 - a) How many terms are there in this expansion?
 - b) Find the constant term in this expansion.

Functions and Graphing

- 9. (no calculator) Let $f(x) = 2^x$, and $g(x) = \frac{x}{x-2}$, $(x \ne 2)$. Find
 - a) $(g \circ f)(3)$;

b) $g^{-1}(5)$.

10. (no calculator) The diagram shows parts of the graphs of $y = x^2$ and $y = 5 - 3(x - 4)^2$.

The graph of $y = x^2$ may be transformed into the graph of $y = 5 - 3(x - 4)^2$ by these transformations.

A reflection in the line y = 0a vertical stretch with scale factor ka horizontal translation of p units a vertical translation of q units.

Write down the values of

a) *k*;

b) *p*;

c) q.

1. (no calculator) The diagram at right shows a sector AOB of a circle of radius 15 cm and centre O. The angle θ at the centre of the circle is 2 radians.

- b) Calculate the area of the sector AOB.
- c) Calculate the area of the shaded region.
- d) Calculate the perimeter of the shaded region.

- 2. The diagrams show two triangles both satisfying the conditions AB = 20 cm, AC = 17 cm, $ABC = 50^{\circ}$. Calculate the size of ACB in **Triangle 2**.
- 3. S is the base of a vertical pole TS. S lies on AB, where A and B are 92.5 meters apart on horizontal ground. $\angle TAB = 20^{\circ}$ and $\angle TBA = 30^{\circ}$. Calculate the length of the pole TS to the nearest tenth of a meter.

In the triangle ABC it is given that BC = 9 cm, CA = 13 cm, AB = 10 cm and D is the midpoint of [AB]. By applying the cosine formula to each of two triangles, or otherwise, find CD.