$\qquad$
Do your work on a separate sheet of paper. Attempt as many without a calculator as possible.

1. Find the term in $x^{4}$ in the expansion of $\left(3 x^{2}-\frac{2}{x}\right)^{5}$.
2. Determine the constant term in the expansion of $\left(x-\frac{2}{x^{2}}\right)^{9}$.
(Total 4 marks)
3. The quadratic equation $4 x^{2}+4 k x+9=0, k>0$ has exactly one solution for $x$.

Find the value of $k$.
(Total 4 marks)
4. The equation $x^{2}-2 k x+1=0$ has two distinct real roots. Find the set of all possible values of $k$.
5. Consider the function $f(x)=2 x^{2}-8 x+5$.
(a) Express $f(x)$ in the form $a(x-p)^{2}+q$, where $a, p, q \in \mathbb{Z}$.
(b) Find the minimum value of $f(x)$.
(Total 6 marks)
6. Find the sum of the infinite geometric series

$$
\frac{2}{3}-\frac{4}{9}+\frac{8}{27}-\frac{16}{81}+\ldots
$$

7. (a) Consider the geometric sequence $-3,6,-12,24, \ldots$.
(i) Write down the common ratio.
(ii) Find the $15^{\text {th }}$ term.

Consider the sequence $x-3, x+1,2 x+8, \ldots$.
(b) When $x=5$, the sequence is geometric.
(i) Write down the first three terms.
(ii) Find the common ratio.
(c) Find the other value of $x$ for which the sequence is geometric.
(d) For this value of $x$, find
(i) the common ratio;
(ii) the sum of the infinite sequence.
8. $O$ is the centre of the circle which has a radius of 5.4 cm .


The area of the shaded sector $O A B$ is $21.6 \mathrm{~cm}^{2}$. Find the length of the minor arc $A B$.
9. A triangle has sides of length 4, 5, 7 units. Find, to the nearest tenth of a degree, the size of the largest angle.
10. The following diagram shows a circle of centre $O$, and radius 15 cm . The arc ACB subtends an angle of 2 radians at the centre O .


Find
(a) the length of the arc ACB;
(b) the area of the shaded region.
(Total 6 marks)
11. In a triangle $\mathrm{ABC}, \mathrm{AB}=4 \mathrm{~cm}, \mathrm{AC}=3 \mathrm{~cm}$ and the area of the triangle is $4.5 \mathrm{~cm}^{2}$.

Find the two possible values of the angle BÂC.
(Total 6 marks)

