AP Calculus

Test #6

Answer Key & Rubrics

Multiple Choice

Calculator Permitted *		Calculator NOT Permitted	
${f E}$	1. D	\mathbf{A}	
\mathbf{A}	2. C	${f E}$	
C	3. E	В	
C	4. D	\mathbf{E}	
В	5. C	\mathbf{E}	
В	6. D	В	
\mathbf{C}	7. B	A	
	entor Permitted * E A C C B	# Calcula E	

Raw Score to Percentage Conversion

18	100%
16 – 17.9	95%
15 – 15.9	90%
13 – 14.9	85%
11 – 12.9	80%
9 – 10.9	75%
7 – 8.9	70%
5 – 6.9	65%
0 - 4.9* (With serious attempt)	60%

Calculator NOT Permitted Free Response Part A – 3 point total

_____1 $\frac{1}{30} \int_0^{30} v(t)dt \approx \frac{1}{30} (6)(7.5 + 12.5 + 13.5 + 14 + 13) = 12.1 \text{ meters per second}$

____1 Uses correct units of meters per second

_____1 The value of $\frac{1}{30} \int_0^{30} v(t)dt$ represents the average velocity during the first 30 seconds.

Calculator NOT Permitted Free Response Part B-1 point total

_____1 Average Acceleration = $\frac{v(18) - v(6)}{18 - 6} = \frac{14.1 - 10.1}{12} = \frac{4}{12} = \frac{1}{3} \text{ m/sec}^2$

Calculator NOT Permitted Free Response Part C-3 points total

_____1 $v'(6) \approx \frac{v(9) - v(3)}{9 - 3} = \frac{12.5 - 7.5}{6} = \frac{5}{6} \text{ m/sec}^2$

_____1 v'(6) represents the acceleration of the particle at t = 6 seconds.

_____1 Since v(6) and v'(6) have the same sign, then the speed of the particle is increasing at t = 6.

Calculator NOT Permitted Free Response Part D – 2 points total

____1 The particle has a negative acceleration on the interval (20, 30) because...

____1 ...velocity is decreasing on this interval.

Calculator Permitted Free Response Part A – 2 points total

_____1 Correct setup: $15 \cdot \int_{9}^{17} E(t)dt + 11 \cdot \int_{17}^{23} E(t)dt$

____ 1 Correct answer: \$104,048

Calculator Permitted Free Response Part B – 4 points total

_____1 $H(17) = \int_{9}^{17} (E(t) - L(t))dt = 3725$ people

 $\underline{}$ 1 H(17) means that at 5 p.m., there are 3725 people in the park.

$$H'(t) = E(t) - L(t)$$

____1 H'(17) = E(17) - L(17)

H'(17) = -380.281 people per hour

_____1 Since H'(17) < 0, the number of people in the park is decreasing at a rate of 380 people per hour.

Calculator Permitted Free Response Part C – 3 points total

_____ 1 H'(t) = E(t) - L(t) = 0 when E(t) = L(t) which will occur when t = 15.794815

____1 Correctly finds the value of H(9), H(15.794815), and H(23)

$$H(9) = 0$$

$$H(15.794815) = \int_{9}^{15.794} (E(t) - L(t))dt = 3950.680$$

$$H(23) = \int_{9}^{23} (E(t) - L(t)) dt = 1.014$$

_____1 According to the Extreme Value Theorem, the maximum number of people in the park at any given time is approximately 3950 or 3951 people.