AP Calculus
Test \#6
Answer Key \& Rubrics
Multiple Choice
Calculator Permitted

1. $\mathbf{C} \mathrm{E}$
2. $\mathbf{E} \quad \mathrm{A}$
3. A C
4. D C
5. D B
6. D B
7. $\mathbf{A} \mathrm{C}$

Calculator NOT Permitted
*

1. D A
2. C E
3. \mathbf{E} B
4. D E
5. C E
6. D B
7. B A

Raw Score to Percentage Conversion

18	100%
$16-17.9$	95%
$15-15.9$	90%
$13-14.9$	85%
$11-12.9$	80%
$9-10.9$	75%
$7-8.9$	70%
$5-6.9$	65%
$0-4.9^{*}$	60%

Calculator NOT Permitted Free Response Part A-3 point total

\qquad $1 \frac{1}{30} \int_{0}^{30} v(t) d t \approx \frac{1}{30}(6)(7.5+12.5+13.5+14+13)=12.1$ meters per second
\qquad 1 Uses correct units of meters per second
\qquad 1 The value of $\frac{1}{30} \int_{0}^{30} v(t) d t$ represents the average velocity during the first 30 seconds.

Calculator NOT Permitted Free Response Part B-1 point total

_1 Average Acceleration $=\frac{v(18)-v(6)}{18-6}=\frac{14.1-10.1}{12}=\frac{4}{12}=\frac{1}{3} \mathrm{~m} / \mathrm{sec}^{2}$

Calculator NOT Permitted Free Response Part C - $\mathbf{3}$ points total

$\ldots 1 v^{\prime}(6) \approx \frac{v(9)-v(3)}{9-3}=\frac{12.5-7.5}{6}=\frac{5}{6} \mathrm{~m} / \mathrm{sec}^{2}$
\qquad $1 v^{\prime}(6)$ represents the acceleration of the particle at $t=6$ seconds.
\qquad 1 Since $v(6)$ and $v^{\prime}(6)$ have the same sign, then the speed of the particle is increasing at $t=6$.

Calculator NOT Permitted Free Response Part D-2 points total

\qquad 1 The particle has a negative acceleration on the interval $(20,30)$ because...
\qquad 1 ...velocity is decreasing on this interval.

Calculator Permitted Free Response Part A-2 points total

\qquad 1 Correct setup: $15 \cdot \int_{9}^{17} E(t) d t+11 \cdot \int_{17}^{23} E(t) d t$
\qquad 1 Correct answer: \$104,048

Calculator Permitted Free Response Part B-4 points total

__ $1 H(17)=\int_{9}^{17}(E(t)-L(t)) d t=3725$ people
\qquad $1 H(17)$ means that at $5 \mathrm{p} . \mathrm{m}$., there are 3725 people in the park.

$$
H^{\prime}(t)=E(t)-L(t)
$$

\qquad $1 \quad H^{\prime}(17)=E(17)-L(17)$
$H^{\prime}(17)=-380.281$ peopleper hour
\qquad 1 Since $H^{\prime}(17)<0$, the number of people in the park is decreasing at a rate of 380 people per hour.

Calculator Permitted Free Response Part C-3 points total

\qquad $1 \quad H^{\prime}(t)=E(t)-L(t)=0$ when $E(t)=L(t)$ which will occur when $t=15.794815$
\qquad 1 Correctly finds the value of $H(9), H(15.794815)$, and $H(23)$

$$
\begin{aligned}
& H(9)=0 \\
& H(15.794815)=\int_{9}^{15.794}(E(t)-L(t)) d t=3950.680 \\
& H(23)=\int_{9}^{23}(E(t)-L(t)) d t=1.014
\end{aligned}
$$

\qquad 1 According to the Extreme Value Theorem, the maximum number of people in the park at any given time is approximately 3950 or 3951 people.

