1. $S_{5}=\frac{5}{2}\{2+32\}$
$S_{5}=85$
OR
$a=2, a+4 d=32$
$\Rightarrow 4 d=30$

$$
d=7.5
$$

$S_{5}=\frac{5}{2}(4+4(7.5))$
$=\frac{5}{2}(4+30)$
$S_{5}=85$
(A1) (C4)
2. Arithmetic sequence $d=3$ (may be implied)
$n=1250$
(A2)
$S=\frac{1250}{2}(3+3750) \quad\left(\right.$ or $\left.S=\frac{1250}{2}(6+1249 \times 3)\right)$

$$
\begin{equation*}
=2345625 \tag{M1}
\end{equation*}
$$

(A1) (C6)
[6]
3. $S=\frac{u_{1}}{1-r}=\frac{\frac{2}{3}}{1-\left(-\frac{2}{3}\right)}$
(M1)(A1)
$=\frac{2}{3} \times \frac{3}{5}$
$=\frac{2}{5}$
(A1) (C4)

[4]

4. (a) Ashley

$$
\begin{align*}
& \text { AP } 12+14+16+\ldots \text { to } 15 \text { terms } \tag{M1}\\
& S_{15}=\frac{15}{2}[2(12)+14(2)] \tag{M1}\\
& =15 \times 26 \\
& =390 \text { hours }
\end{align*}
$$

(A1) 3
(b) Billie

$$
\text { GP } \quad 12,12(1.1), 12(1.1)^{2} \ldots
$$

(i) In week 3, 12(1.1) ${ }^{2}$

$$
=14.52 \text { hours }
$$

(ii) $\quad S_{15}=\frac{12\left[(1.1)^{15}-1\right]}{1.1-1}$

$$
\begin{equation*}
=381 \text { hours }(3 \mathrm{sf}) \tag{M1}
\end{equation*}
$$

(A1) 4
(c) $12(1.1)^{n-1}>50$
$(1.1)^{n-1}>\frac{50}{12}$
$(n-1) \ln 1.1>\ln \frac{50}{12}$
$n-1>\frac{\ln \frac{50}{12}}{\ln 1.1}$
$n-1>14.97$

$$
\begin{equation*}
n>15.97 \tag{A1}
\end{equation*}
$$

\Rightarrow Week 16

OR

$12(1.1)^{n-1}>50$
By trial and error
$12(1.1)^{14}=45.6,12(1.1)^{15}=50.1$
$\Rightarrow n-1=15$
$\Rightarrow n=16$ (Week 16)
5. $9^{x-1}=\left(\frac{1}{3}\right)^{2 x}$
$3^{2 x-2}=3^{-2 x}$
(M1) (A1)
$2 x-2=-2 x$
$x=\frac{1}{2}$
6. (a) $\log _{5} x^{2}=2 \log _{5} x$

$$
\begin{equation*}
=2 y \tag{M1}
\end{equation*}
$$

(b) $\log _{5} \frac{1}{x}=-\log _{5} x$
(M1)
(A1) (C2)
(c) $\log _{25} x=\frac{\log _{5} x}{\log _{5} 25}$

$$
\begin{equation*}
=\frac{1}{2} y \tag{M1}
\end{equation*}
$$

7. $1.023^{t}=2$
$\Rightarrow t=\frac{\ln 2}{\ln 1.023}$
$=30.48$...
30 minutes (nearest minute)
Note: Do not accept 31 minutes.
(A1) (C4)
8. (a) $\quad \begin{aligned} n & =800 \mathrm{e}^{0} \\ n & =800\end{aligned}$
(A1)
A1 N2
(b) evidence of using the derivative (M1) $n^{\prime}(15)=731$

(c) METHOD 1

setting up inequality (accept equation or reverse inequality)
e.g. $n^{\prime}(t)>10000$
evidence of appropriate approach
M1
e.g. sketch, finding derivative
$k=35.1226 \ldots$
least value of k is 36

METHOD 2

$n^{\prime}(35)=9842$, and $n^{\prime}(36)=11208 \quad$ A2
least value of k is $36 \quad \mathrm{~A} 2$ N2
9. $\log _{10}\left(\frac{P}{Q R^{3}}\right)^{2}=2 \log _{10}\left(\frac{P}{Q R^{3}}\right)$
$2 \log _{10}\left(\frac{P}{Q R^{3}}\right)=2\left(\log _{10} P-\log _{10}\left(Q R^{3}\right)\right)$

$$
\begin{equation*}
=2\left(\log _{10} P-\log _{10} Q-3 \log _{10} R\right) \tag{M1}
\end{equation*}
$$

$=2(x-y-3 z)$
$=2 x-2 y-6 z$ or $2(x-y-3 z)$
10. $\quad \log _{27}(x(x-0.4))=1$
(M1)(A1)

$$
\begin{align*}
& x^{2}-0.4 x=27 \tag{M1}\\
& x=5.4 \text { or } x=-5 \tag{G2}\\
& \quad x=5.4
\end{align*}
$$

(A1) (C6)
Note: Award (C5) for giving both roots.

