1.
$$S_5 = \frac{5}{2} \{2 + 32\}$$
 (M1)(A1)(A1)
 $S_5 = 85$ (A1)
OR
 $a = 2, a + 4d = 32$ (M1)
 $\Rightarrow 4d = 30$
 $d = 7.5$ (A1)
 $S_5 = \frac{5}{2}(4 + 4(7.5))$ (M1)
 $= \frac{5}{2}(4 + 30)$

$$2 S_5 = 85$$

[4]

(A1) (C4)

2. Arithmetic sequence
$$d = 3$$
 (may be implied)
 $n = 1250$ (M1)(A1)
 $S = \frac{1250}{2}(3 + 3750)$ (or $S = \frac{1250}{2}(6 + 1249 \times 3)$) (M1)
 $= 2 345 625$ (A1) (C6)
[6]

3.
$$S = \frac{u_1}{1-r} = \frac{\frac{2}{3}}{1-\left(-\frac{2}{3}\right)}$$
 (M1)(A1)
 $= \frac{2}{3} \times \frac{3}{5}$ (A1)
 $= \frac{2}{5}$ (A1) (C4)
[4]

4. (a) Ashley
AP
$$12 + 14 + 16 + ...$$
 to 15 terms (M1)
 $S_{15} = \frac{15}{2} [2(12) + 14(2)]$ (M1)
 $= 15 \times 26$
 $= 390$ hours (A1)

3

(b)	Billie							
	(i)	GP	12, 12(1.1), $12(1.1)^2$	(M1)				
		In week 3, $12(1.1)^2$	(A1)					
			= 14.52 hours	(AG)				

(ii)
$$S_{15} = \frac{12[(1.1)^{15} - 1]}{1.1 - 1}$$
 (M1)
= 381 hours (3 sf) (A1) 4

(c)
$$12 (1.1)^{n-1} > 50$$
 (M1)
 $(1.1)^{n-1} > \frac{50}{12}$ (A1)

$$(n-1)\ln 1.1 > \ln \frac{50}{12}$$

$$n-1 > \frac{\ln \frac{50}{12}}{1}$$
(A1)

UK		
$12(1.1)^{n-1} > 50$	(M1)	
By trial and error		
$12(1.1)^{14} = 45.6, 12(1.1)^{15} = 50.1$	(A1)	
$\Rightarrow n-1=15$	(A1)	
\Rightarrow <i>n</i> = 16 (Week 16)	(A1)	4

[11]

5.
$$9^{x-1} = \left(\frac{1}{3}\right)^{2x}$$

 $3^{2x-2} = 3^{-2x}$ (M1) (A1)
 $2x - 2 = -2x$ (A1)
 $x = \frac{1}{2}$ (A1) (C4)

[4]

6. (a)
$$\log_5 x^2 = 2 \log_5 x$$
 (M1)
= 2y (A1) (C2)

(b)
$$\log_5 \frac{1}{x} = -\log_5 x$$
 (M1)
= -y (A1) (C2)

(c)
$$\log_{25} x = \frac{\log_5 x}{\log_5 25}$$
 (M1)
= $\frac{1}{2} y$ (A1) (C2)

[6]

- 7. $1.023^{t} = 2$ (M1) $\Rightarrow t = \frac{\ln 2}{\ln 1.023}$ (M1)(A1) = 30.48...30 minutes (nearest minute) (A1) (C4)
 - Note: Do not accept 31 minutes.

[4]

8.	(a)	$n = 800e^{0}$ n = 800	(A1) A1	N2	
	(b)	evidence of using the derivative $n'(15) = 731$	(M1) A1	N2	
	(c)	METHOD 1			
		setting up inequality (accept equation or reverse inequality) e.g. $n'(t) > 10\ 000$	A1		
		evidence of appropriate approach <i>e.g.</i> sketch, finding derivative	M1		
		k = 35.1226 least value of <i>k</i> is 36	(A1) A1	N2	
		METHOD 2			
		<i>n</i> ′(35) = 9842, and <i>n</i> ′(36) = 11208	A2		
		least value of k is 36	A2	N2	[8]

9.
$$\log_{10}\left(\frac{P}{QR^3}\right)^2 = 2\log_{10}\left(\frac{P}{QR^3}\right)$$
 (M1)

$$2\log_{10}\left(\frac{P}{QR^3}\right) = 2(\log_{10}P - \log_{10}(QR^3)) \tag{M1}$$

$$= 2(\log_{10}P - \log_{10}Q - 3\log_{10}R)$$
(M1)
= 2(x - y - 3z)

$$= 2x - 2y - 6z \text{ or } 2(x - y - 3z)$$
(A1)

[4]

10.
$$\log_{27} (x(x-0.4)) = 1$$
 (M1)(A1)

 $x^2 - 0.4x = 27$
 (M1)

 $x = 5.4$ or $x = -5$
 (G2)

 $x = 5.4$
 (A1)

 Note:
 Award (C5) for giving both roots.

[6]
