Use this sheet in conjunction with your old notes, quizzes, and tests to review.

Formulas/Identities:

1. An arithmetic series has five terms. The first term is 2 and the last term is 32 . Find the sum of the series.
(Total 4 marks)
2. Gwendolyn added the multiples of 3 , from 3 to 3750 and found that

$$
3+6+9+\ldots+3750=s
$$

Calculate s.
(Total 6 marks)
3. Find the sum of the infinite geometric series

$$
\frac{2}{3}-\frac{4}{9}+\frac{8}{27}-\frac{16}{81}+\ldots
$$

(Total 4 marks)
4. Ashley and Billie are swimmers training for a competition.
(a) Ashley trains for 12 hours in the first week. She decides to increase the amount of time she spends training by 2 hours each week. Find the total number of hours she spends training during the first 15 weeks.
(b) Billie also trains for 12 hours in the first week. She decides to train for 10% longer each week than the previous week.
(i) Show that in the third week she trains for 14.52 hours.
(ii) Find the total number of hours she spends training during the first 15 weeks.
(c) In which week will the time Billie spends training first exceed 50 hours?
5. Solve the equation $9^{x-1}=\left(\frac{1}{3}\right)^{2 x}$.
6. Given that $\log _{5} x=y$, express each of the following in terms of y.
(a) $\log _{5} x^{2}$
(b) $\log _{5}\left(\frac{1}{x}\right)$
(c) $\log _{25} x$
(Total 6 marks)
7. A population of bacteria is growing at the rate of 2.3% per minute. How long will it take for the size of the population to double? Give your answer to the nearest minute.
(Total 4 marks)
8. The number of bacteria, n, in a dish, after t minutes is given by $n=800 \mathrm{e}^{013 t}$.
(a) Find the value of n when $t=0$.
(b) Find the rate at which n is increasing when $t=15$.
(c) After k minutes, the rate of increase in n is greater than 10000 bacteria per minute. Find the least value of k, where $k \in \mathbb{Z}$.
(Total 8 marks)
9. Let $\log _{10} P=x, \log _{10} Q=y$ and $\log _{10} R=z$. Express $\log _{10}\left(\frac{P}{Q R^{3}}\right)^{2}$ in terms of x, y and z.
(Total 4 marks)
10. Solve the equation $\log _{27} x=1-\log _{27}(x-0.4)$.
(Total 6 marks)

