When using your calculator to find, for example $\sin^{-1}(\frac{3}{4})$

Use 2nd, INV or SHIFT before sin.

depending on what calculator you are using

2 Use your calculator to find the acute angle θ in degrees to 3 significant figures:

 $\sin\theta = 0.9364$

b $\cos \theta = 0.2381$ **c** $\tan \theta = 1.7321$

d $\cos \theta = \frac{2}{7}$

 $\sin \theta = \frac{1}{3}$

f $\tan \theta = \frac{14}{3}$ g $\sin \theta = \frac{\sqrt{3}}{11}$

 $h \quad \cos \theta = \frac{5}{\sqrt{37}}$

Example 7

Find α in degrees, correct to 3 significant figures:

For angle α , OPP = 11, HYP = 13.

So,
$$\sin \alpha = \frac{11}{13}$$

$$\therefore \quad \alpha = \sin^{-1}(\frac{11}{13})$$

$$\alpha = 57.8$$

Steps: DEG mode, 2nd sin 11 : 13) ENTER

3 Find, correct to 3 significant figures, the measure of the unknown angle in each of the following:

Solve the following triangles, i.e., find all unknown sides and angles:

5 Find unknown sides and angles in the following figures:

Rearrangement of the original cosine rule formulae can be used for angle finding if we know all three sides.

The formulae for finding the angles are:

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
 $\cos B = \frac{c^2 + a^2 - b^2}{2ca}$

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

Example 6

In triangle ABC, if AB=7 cm, BC=8 cm and CA=5 cm, find the measure of angle BCA.

By the cosine rule:

$$\cos C = \frac{(5^2 + 8^2 - 7^2)}{(2 \times 5 \times 8)}$$

$$\therefore C = \cos^{-1}\left(\frac{(5^2 + 8^2 - 7^2)}{(2 \times 5 \times 8)}\right)$$

$$C = 60$$

So, angle BCA measures 60° .

2 Find the measure of all angles of:

3 Find the measure of obtuse angle PQR.

- 4 Find:
 - a the smallest angle of a triangle with sides 11 cm, 13 cm and 17 cm
 - **b** the largest angle of a triangle with sides 4 cm, 7 cm and 9 cm.
- 5 Find:
 - a $\cos \theta$ but not θ
 - **b** the value of x.

