7

For the graph of y = g(x) given, sketch the graph

8 For the graph of y = h(x) given, sketch the graph of:

- a y = h(x) + 1 b $y = \frac{1}{2}h(x)$

- y = h(-x) $y = h\left(\frac{x}{2}\right)$

REVIEW SET 5A

NON-CALCULATOR

1 If $f(x) = x^2 - 2x$, find in simplest form:

- a f(3)
- **b** f(2x)
- $\mathbf{c} \quad f(-x) \qquad \qquad \mathbf{d} \quad 3f(x) 2$

2 If $f(x) = 5 - x - x^2$, find in simplest form:

- a f(-1) b f(x-1) c $f\left(\frac{x}{2}\right)$ d 2f(x)-f(-x)

3 The graph of $f(x) = 3x^3 - 2x^2 + x + 2$ is translated to its image g(x) by the vector $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$. Write the equation of g(x) in the form $g(x) = ax^3 + bx^2 + cx + d$.

4 The graph of y = f(x) is shown alongside. The x-axis is a tangent to f(x) at x = a and f(x)cuts the x-axis at x = b. On the same diagram, sketch the graph of y = f(x - c) where 0 < c < b - a. Indicate the x-intercepts of y = f(x - c).

5 For the graph of y = f(x), sketch graphs of:

- **c** y = f(x+2) **d** y = f(x) + 2

6 Consider the function $f: x \mapsto x^2$. On the same set of axes graph:

- a y = f(x)

- **b** y = f(x-1) **c** y = 3f(x-1) **d** y = 3f(x-1) + 2

7 The graph of y = f(x) is shown alongside.

- **a** Sketch the graph of y = g(x) where g(x) = f(x+3) - 1.
- **b** State the equation of the vertical asymptote of y = g(x).
- Identify the point A' on the graph of y = g(x) which corresponds to point A.

REVIEW SET 5B

CALCULATOR

1 Use your calculator to help graph $f(x) = (x+1)^2 - 4$. Include all axes intercepts, and the coordinates of the turning point of the function.

2 Consider the function $f: x \mapsto x^2$. On the same set of axes graph:

$$\mathbf{a} \quad y = f(x)$$

b
$$y = f(x+2)$$

$$y = 2f(x+2)$$

b
$$y = f(x+2)$$
 c $y = 2f(x+2)$ **d** $y = 2f(x+2) - 3$

3 Consider
$$f: x \mapsto \frac{2^x}{x}$$
.

a Does the function have any axes intercepts?

b Find the equations of the asymptotes of the function.

• Find any turning points of the function.

d Sketch the function for $-4 \leqslant x \leqslant 4$.

4 Consider $f: x \mapsto 2^{-x}$.

a Use your calculator to help graph the function.

b True or false?

i As
$$x \to \infty$$
, $2^{-x} \to 0$.

ii As
$$x \to -\infty$$
, $2^{-x} \to 0$.
iv $2^{-x} > 0$ for all x .

iii The y-intercept is
$$\frac{1}{2}$$
.

iv
$$2^{-x} > 0$$
 for all x .

5 The graph of the function $f(x) = (x+1)^2 + 4$ is translated 2 units to the right and 4 units up.

a Find the function g(x) corresponding to the translated graph.

b State the range of f(x).

 \bullet State the range of g(x).

6 For each of the following functions:

i Find y = f(x), the result when the function is translated by $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$.

ii Sketch the original function and its translated function on the same set of axes. Clearly state any asymptotes of each function.

III State the domain and range of each function.

$$\mathbf{a} \quad y = \frac{1}{x}$$

b
$$y = 2^x$$

$$y = \log_4 x$$

7 Sketch the graph of $f(x) = x^2 + 1$, and on the same set of axes sketch the graphs of:

$$\mathbf{a} - f(x)$$

b
$$f(2x)$$

c
$$f(x) + 3$$

REVIEW SET 5C

- **1** Consider the graph of y = f(x) shown.
 - **a** Use the graph to determine:
 - i the coordinates of the turning point
 - ii the equation of the vertical asymptote
 - iii the equation of the horizontal asymptote
 - iv the x-intercepts.
 - **b** Graph the function $g: x \mapsto x+1$ on the same set of axes.

- Hence estimate the coordinates of the points of intersection of y = f(x) and y = g(x).
- **2** Sketch the graph of $f(x) = -x^2$, and on the same set of axes sketch the graph of:

 - **a** y = f(-x) **b** y = -f(x) **c** y = f(2x)
- **d** y = f(x-2)
- **3** The graph of a cubic function y = f(x) is shown alongside.
 - **a** Sketch the graph of g(x) = -f(x-1).
 - **b** State the coordinates of the turning points of y = g(x).

4 The graph of $f(x) = x^2$ is transformed to the graph of g(x) by a reflection and a translation as illustrated. Find the formula for g(x) in the form $g(x) = ax^2 + bx + c.$

- **5** Given the graph of y = f(x), sketch graphs of:
 - a f(-x)
- **b** f(x+1)
- f(x) 3.

- **6** The graph of $f(x) = x^3 + 3x^2 x + 4$ is translated to its image y = g(x) by the vector $\binom{-1}{3}$. Write the equation of g(x) in the form $g(x) = ax^3 + bx^2 + cx + d$.
- **7** a Find the equation of the line that results when the line f(x) = 3x + 2 is translated:
 - i 2 units to the left

- ii 6 units upwards.
- **b** Show that when the linear function f(x) = ax + b, a > 0 is translated k units to the left, the resulting line is the same as when f(x) is translated ka units upwards.