EXERCISE 3G.1

1 The weight W_t of bacteria in a culture t hours after establishment is given by $W_t = 100 \times 2^{0.1t}$ grams.

- a Find the initial weight.
- **b** Find the weight after: **i** 4 hours **ii** 10 hours **iii** 24 hours.
- ullet Sketch the graph of W_t against t using the results of ullet and ullet only.
- **d** Use technology to graph $Y_1 = 100 \times 2^{0.1X}$ and check your answers to **a**, **b**, and **c**.
- A breeding program to ensure the survival of pygmy possums is established with an initial population of 50 (25 pairs). From a previous program, the expected population P_n in n years' time is given by $P_n = P_0 \times 2^{0.3n}$.
 - What is the value of P_0 ?
 - **b** What is the expected population after: i 2 years ii 5 years iii 10 years?
 - ullet Sketch the graph of P_n against n using ullet and ullet only.
 - **d** Use technology to graph $Y_1 = 50 \times 2^{0.3X}$ and check your answers to **b**.
- 3 A species of bear is introduced to a large island off Alaska where previously there were no bears. 6 pairs of bears were introduced in 1998. It is expected that the population will increase according to $B_t = B_0 \times 2^{0.18t}$ where t is the time since the introduction.
 - a Find B_0 .

- **b** Find the expected bear population in 2018.
- Find the expected percentage increase from 2008 to 2018.
- 4 The speed V_t of a chemical reaction is given by $V_t = V_0 \times 2^{0.05t}$ where t is the temperature in ${}^{\circ}\text{C}$.
 - **a** Find the reaction speed at: 0° C ii 20° C.
 - **b** Find the percentage increase in reaction speed at 20°C compared with 0°C.
 - Find $\left(\frac{V_{50}-V_{20}}{V_{20}}\right) \times 100\%$ and explain what this calculation means.

DECAY

Consider a radioactive substance with original weight 20 grams. It *decays* or reduces by 5% each year. The multiplier for this is 95% or 0.95.

If W_n is the weight after n years, then:

$$W_0 = 20$$
 grams

$$W_1 = W_0 \times 0.95 = 20 \times 0.95$$
 grams

$$W_2 = W_1 \times 0.95 = 20 \times (0.95)^2$$
 grams

$$W_3 = W_2 \times 0.95 = 20 \times (0.95)^3$$
 grams

:

$$W_{20} = 20 \times (0.95)^{20} \approx 7.2 \text{ grams}$$

:

$$W_{100} = 20 \times (0.95)^{100} \approx 0.1 \text{ grams}$$

and from this pattern we see that $W_n = 20 \times (0.95)^n$.

EXERCISE 3G.2

- 1 The weight of a radioactive substance t years after being set aside is given by $W(t) = 250 \times (0.998)^t$ grams.
 - a How much radioactive substance was initially set aside?
 - **b** Determine the weight of the substance after:
 - i 400 years
- ii 800 years
- iii 1200 years.
- **c** Sketch the graph of W(t) for $t \ge 0$ using **a** and **b** only.
- **d** Use your graph or graphics calculator to find how long it takes for the substance to decay to 125 grams.
- 2 The temperature T of a liquid which has been placed in a refrigerator is given by $T(t) = 100 \times 2^{-0.02t}$ °C where t is the time in minutes.
 - **a** Find the initial temperature of the liquid.
 - **b** Find the temperature after:
 - 15 minutes
- ii 20 minutes
- iii 78 minutes.
- **c** Sketch the graph of T(t) for $t \ge 0$ using **a** and **b** only.
- 3 Answer the **Opening Problem** on page **82**.
- 4 The weight W_t grams of radioactive substance remaining after t years is given by $W_t = 1000 \times 2^{-0.03t}$ grams.
 - **a** Find the initial weight of the radioactive substance.
 - **b** Find the weight remaining after:
 - i 10 years

- ii 100 years
- iii 1000 years.

- **c** Graph W_t against t using **a** and **b** only.
- **d** Use your graph or graphics calculator to find the time when 10 grams of the substance remains.
- Write an expression for the amount of substance that has decayed after t years.
- The weight W_t of a radioactive uranium-235 sample remaining after t years is given by the formula $W_t = W_0 \times 2^{-0.0002t}$ grams, $t \ge 0$. Find:
 - a the original weight
- b the percentage weight loss after 1000 years
- the time required until $\frac{1}{512}$ of the sample remains.

н

THE NATURAL EXPONENTIAL e^x

We have seen that the simplest exponential functions are of the form $f(x) = b^x$ where b > 0, $b \neq 1$.

Graphs of some of these functions are shown alongside.

We can see that for all positive values of the base b, the graph is always positive.

Hence

$$b^x > 0$$
 for all $b > 0$.

There are an infinite number of possible choices for the base number.

