Example 14

Self Tutor

Find the exact values of $\sin \frac{4\pi}{3}$, $\cos \frac{4\pi}{3}$, and $\tan \frac{4\pi}{3}$.

$$\sin(\frac{4\pi}{3}) = -\frac{\sqrt{3}}{2}$$

$$\cos(\frac{4\pi}{3}) = -\frac{1}{2}$$

$$\tan(\frac{4\pi}{3}) = \frac{-\frac{\sqrt{3}}{2}}{-\frac{1}{2}} = \sqrt{3}$$

EXERCISE 8E

- 1 Use a unit circle diagram to find exact values for $\sin \theta$, $\cos \theta$, and $\tan \theta$ for θ equal to:
 - $\frac{\pi}{4}$

- 2 Use a unit circle diagram to find exact values for $\sin \beta$, $\cos \beta$, and $\tan \beta$ for β equal to:
 - $\frac{\pi}{6}$ a
- $\frac{2\pi}{3}$
- $\frac{7\pi}{6}$

- **3** Find the exact values of:
 - $a \cos 120^{\circ}$, $\sin 120^{\circ}$, and $\tan 120^{\circ}$
- **b** $\cos(-45^{\circ})$, $\sin(-45^{\circ})$, and $\tan(-45^{\circ})$
- **a** Find the exact values of $\cos 90^{\circ}$ and $\sin 90^{\circ}$.
 - **b** What can you say about tan 90°?

Example 15

Self Tutor

Without using a calculator, show that $8\sin(\frac{\pi}{3})\cos(\frac{5\pi}{6}) = -6$.

- $\sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}$ and $\cos(\frac{5\pi}{6}) = -\frac{\sqrt{3}}{2}$
- $\therefore 8\sin(\frac{\pi}{3})\cos(\frac{5\pi}{6}) = 8(\frac{\sqrt{3}}{2})(-\frac{\sqrt{3}}{2})$ =2(-3)
- 5 Without using a calculator, evaluate:
 - $\sin^2 60^\circ$

- $\sin 30^{\circ} \cos 60^{\circ}$
- $4\sin 60^{\circ}\cos 30^{\circ}$

d $1 - \cos^2(\frac{\pi}{6})$

- e $\sin^2(\frac{2\pi}{3}) 1$ f $\cos^2(\frac{\pi}{4}) \sin(\frac{7\pi}{6})$

- **g** $\sin(\frac{3\pi}{4}) \cos(\frac{5\pi}{4})$ **h** $1 2\sin^2(\frac{7\pi}{6})$ **i** $\cos^2(\frac{5\pi}{6}) \sin^2(\frac{5\pi}{6})$
- j $\tan^2(\frac{\pi}{3}) 2\sin^2(\frac{\pi}{4})$ k $2\tan(-\frac{5\pi}{4}) \sin(\frac{3\pi}{2})$ l $\frac{2\tan 150^\circ}{1 \tan^2 150^\circ}$

Check all answers using your calculator.

Example 16

Self Tutor

Find all angles $0 \le \theta \le 2\pi$ with a cosine of $\frac{1}{2}$.

Since the cosine is $\frac{1}{2}$, we draw the vertical line $x = \frac{1}{2}$.

Because $\frac{1}{2}$ is involved, we know the required angles are multiples of $\frac{\pi}{6}$.

They are $\frac{\pi}{3}$ and $\frac{5\pi}{3}$.

- **6** Find all angles between 0° and 360° with:
 - a sine of $\frac{1}{2}$

- **b** a sine of $\frac{\sqrt{3}}{2}$
- c a cosine of $\frac{1}{\sqrt{2}}$

- d a cosine of $-\frac{1}{2}$
- e a cosine of $-\frac{1}{\sqrt{2}}$ f a sine of $-\frac{\sqrt{3}}{2}$
- 7 Find all angles between 0 and 2π (inclusive) which have:
 - a tangent of 1
- **b** a tangent of -1
- a tangent of $\sqrt{3}$

- d a tangent of 0
- e a tangent of $\frac{1}{\sqrt{3}}$
- f a tangent of $-\sqrt{3}$

- 8 Find all angles between 0 and 4π with:
 - a cosine of $\frac{\sqrt{3}}{2}$
- **b** a sine of $-\frac{1}{2}$
- \mathbf{c} a sine of -1

- Find θ if $0 \le \theta \le 2\pi$ and:

- **a** $\cos \theta = \frac{1}{2}$ **b** $\sin \theta = \frac{\sqrt{3}}{2}$ **c** $\cos \theta = -1$ **d** $\sin \theta = 1$ **e** $\cos \theta = -\frac{1}{\sqrt{2}}$ **f** $\sin^2 \theta = 1$ **g** $\cos^2 \theta = 1$ **h** $\cos^2 \theta = \frac{1}{2}$ **i** $\tan \theta = -\frac{1}{\sqrt{3}}$ **j** $\tan^2 \theta = 3$

- **10** Find *all* values of θ for which $\tan \theta$ is:
- a zero
- **b** undefined.

THE EQUATION OF A STRAIGHT LINE

If a straight line makes an angle of θ with the positive x-axis then its gradient is $m = \tan \theta$.

Proof:

