Ε

TRIGONOMETRIC EQUATIONS IN QUADRATIC FORM

Sometimes we may be given trigonometric equations in quadratic form.

For example, $2\sin^2 x + \sin x = 0$ and $2\cos^2 x + \cos x - 1 = 0$ are clearly quadratic equations where the variables are $\sin x$ and $\cos x$ respectively.

These equations can be factorised by quadratic factorisation and then solved for x.

Example 19

Self Tutor

Solve for x on $0 \le x \le 2\pi$, giving your answers as exact values:

$$2\sin^2 x + \sin x = 0$$

$$2\cos^2 x + \cos x - 1 = 0$$

$$2\sin^2 x + \sin x = 0$$

$$\therefore \sin x (2\sin x + 1) = 0$$

$$\therefore \sin x = 0 \text{ or } -\frac{1}{2}$$

 $\sin x = 0$ when $x=0, \pi, \text{ or } 2\pi$

 $\cos x = \frac{1}{2}$ when $x = \frac{\pi}{3}$ or $\frac{5\pi}{3}$

 $\sin x = -\frac{1}{2} \quad \text{when}$ $x = \frac{7\pi}{6} \text{ or } \frac{11\pi}{6}$

 $\cos x = -1$ when $x = \pi$

The solutions are:

$$x = 0, \pi, \frac{7\pi}{6}, \frac{11\pi}{6}, \text{ or } 2\pi.$$

The solutions are:

$$x = \frac{\pi}{3}$$
, π , or $\frac{5\pi}{3}$.

EXERCISE 11E

1 Solve for $0 \le x \le 2\pi$ giving your answers as exact values:

$$2\sin^2 x + \sin x = 0$$

$$2\cos^2 x = \cos x$$

$$2\cos^2 x + \cos x - 1 = 0$$

a
$$2\sin^2 x + \sin x = 0$$

b $2\cos^2 x = \cos x$
d $2\sin^2 x + 3\sin x + 1 = 0$
e $\sin^2 x = 2 - \cos x$

$$\sin^2 x = 2 - \cos x$$

2 Solve for $0 \le x \le 2\pi$ giving your answers as exact values:

$$\cos 2x - \cos x = 0$$

a
$$\cos 2x - \cos x = 0$$
 b $\cos 2x + 3\cos x = 1$

$$\cos 2x + \sin x = 0$$

$$\sin x + \cos x = \sqrt{2}$$