Karen Blackert

May 2017

Problem Statement

1. Find the general solution of the differential equation $\frac{d y}{d x}=y \sin x$.
2. Find the particular solution of the differential equation $\frac{d y}{d x}=y \sin x$ that satisfies the following initial condition:
a. $\left(0, \frac{2}{e}\right)$
b. $\left(0, \frac{1}{e}\right)$
c. $\left(0, \frac{-2}{e}\right)$
3. Sketch the slope field for $\frac{d y}{d x}=y \sin x$, along with the three solutions found in part (2).

Solution

1. The first step in solving the differential equation $\frac{d y}{d x}=y \sin x$ is to separate the variables.

$$
\begin{aligned}
& \frac{d y}{d x}=y \sin x \\
& \frac{d y}{y}=\sin x d x
\end{aligned}
$$

Next, integrate both sides of the equation with respect to the appropriate variables.

$$
\begin{aligned}
& \int \frac{d y}{y}=\int \sin x d x \\
& \ln |y|=-\cos x+C
\end{aligned}
$$

Finally, we solve the equation for y in terms of x.

$$
\begin{gathered}
e^{\ln |y|}=e^{-\cos x+C} \\
y=e^{-\cos x} \cdot e^{C} \\
y=C e^{-\cos x}
\end{gathered}
$$

2. To find the particular solution, substitute the initial conditions into the general solution and solve for the constant C.
(a) $\operatorname{For}\left(0, \frac{2}{e}\right)$

$$
\begin{gathered}
\frac{2}{e}=C e^{-\cos 0} \\
\frac{2}{e}=C e^{-1} \\
\frac{2}{e}=\frac{C}{e} \\
2=C \\
\therefore y=2 e^{-\cos x}
\end{gathered}
$$

(b) $\operatorname{For}\left(0, \frac{1}{e}\right)$

$$
\begin{gathered}
\frac{1}{e}=C e^{-\cos 0} \\
\frac{1}{e}=C e^{-1} \\
\frac{1}{e}=\frac{C}{e} \\
1=C \\
\therefore y=e^{-\cos x}
\end{gathered}
$$

(c) $\operatorname{For}\left(0, \frac{-2}{e}\right)$

$$
\begin{gathered}
\frac{-2}{e}=C e^{-\cos 0} \\
\frac{-2}{e}=C e^{-1} \\
\frac{-2}{e}=\frac{C}{e} \\
-2=C \\
\therefore y=-2 e^{-\cos x}
\end{gathered}
$$

3. The slope field for $\frac{d y}{d x}=y \sin x$ is shown below, along with the three solutions found in part (2).

