| Name: |                                                                                                    | Date: |                                                                                                                                                    |  |  |
|-------|----------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|       |                                                                                                    | I     |                                                                                                                                                    |  |  |
| 1.    | The figure below shows the graph of $f$ . Use the figure to answer questions 1-4.                  | 3.    | $\lim_{x \to 7} f \text{ is}$                                                                                                                      |  |  |
|       |                                                                                                    |       | A. 1 B. 2 C1 D. 0                                                                                                                                  |  |  |
|       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                              |       | $\lim_{x \to 0^{-}} f \text{ is}$                                                                                                                  |  |  |
|       |                                                                                                    |       | A1 B. 0 C. 4                                                                                                                                       |  |  |
|       | At which of the following $x$ -values is $f$ continuous?<br>Choose the BEST answer.                |       | D. no limit                                                                                                                                        |  |  |
|       | I6                                                                                                 |       | $\lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} =$                                                                                                 |  |  |
|       | Ш. О                                                                                               |       | $h \rightarrow 0$ $h$                                                                                                                              |  |  |
|       | III. 3                                                                                             |       | A. $2\sqrt{x}$ B. $\frac{1}{2\sqrt{x}}$                                                                                                            |  |  |
|       | IV. 5                                                                                              |       | C. $-\frac{1}{2\sqrt{5}}$ D. $2x$                                                                                                                  |  |  |
|       | V. 7                                                                                               |       | $2\sqrt{x}$ D. $2x$                                                                                                                                |  |  |
|       | VI. 10                                                                                             | 6.    | $\lim_{\theta \to 0} \frac{\cos(\theta + h) - \cos \theta}{h} =$                                                                                   |  |  |
|       | A. I, II, and IV B. I, IV, and VI                                                                  | 0.    | $\stackrel{\text{him}}{\theta \to 0} h$                                                                                                            |  |  |
|       | C. II, III, and V D. I and IV                                                                      |       | A. $-\cos\theta$ B. $-\sin\theta$                                                                                                                  |  |  |
| 2.    | At which of the following $x$ -values does $f$ have<br>a removeable discontinuity? Choose the BEST |       | C. $2\cos\theta$ D. $-2\cos\theta$                                                                                                                 |  |  |
|       | answer.<br>I. –6                                                                                   | 7.    | $\lim_{x \to -3} \frac{1}{(x+3)^2} =$                                                                                                              |  |  |
|       | Ш. О                                                                                               |       | A. 0 B. −3 C. −∞ D. ∞                                                                                                                              |  |  |
|       | III. 3                                                                                             |       | <u>1 _ 1</u>                                                                                                                                       |  |  |
|       | IV. 5                                                                                              | 8.    | $\lim_{x \to 3} \frac{\frac{1}{x} - \frac{1}{3}}{x - 3} =$                                                                                         |  |  |
|       | V. 7<br>VI. 10                                                                                     |       | A. $-\frac{1}{9}$ B. $\frac{1}{27}$ C. $\frac{1}{9}$ D. $\frac{1}{3}$                                                                              |  |  |
|       | A. I, II, and IV B. IV and VI                                                                      |       |                                                                                                                                                    |  |  |
|       | C. II, III, and V D. V only                                                                        |       | If $f(x) = \begin{cases} -7 & \text{for } x = 4, \\ 2x + 7 & \text{for } x \neq 4 \end{cases}$ then<br>$\lim_{x \to 4} f(x) = \underline{\qquad}.$ |  |  |
|       |                                                                                                    | 10.   | Find A so that $\lim_{x \to 2} \frac{x^2 + Ax - 10}{x - 2}$ exists.                                                                                |  |  |

11. 
$$\lim_{x \to 0} \frac{\sin 4x}{2x} \text{ is } \qquad 19. \qquad 19.$$

19. 
$$\lim_{h \to \infty} \frac{5}{\sqrt{h+7}} \text{ is}$$
A. 1 B. 0 C. 3 D.  $\infty$ 
20. 
$$\lim_{x \to \infty} \frac{2x+1}{x} \text{ is}$$
A. 0 B. 3 C. 2 D.  $\infty$ 
21. 
$$\lim_{x \to \infty} \frac{x^2}{(1-x)(1+x)} \text{ is}$$
A. 1 B. -1 C. 0 D.  $\infty$ 
22. Which of the following functions has a horizontal asymptote at  $y = -\frac{1}{2}$ ?
A.  $\frac{x^3}{1-2x^3}$ 
B.  $\frac{x}{\sqrt{2x+1}}$ 
C.  $\frac{x-1}{2x^2+1}$ 
D.  $\frac{2x-5}{1-4x^2}$ 

- 23. Given a function defined by  $f(x) = \frac{3x 12}{x^2 6x + 8}$ , for what value(s) of x is the function discontinuous?
  - A. 4 only
     B. 2

     C. 2, 4
     D. -4, -2
- 24. Which of the following functions are continuous for all real numbers *x*?
  - I.  $y = \frac{1}{x}$ II.  $y = 2^{x}$ III.  $y = \sec x$
  - A. II only B. II and III only
  - C. I and II only D. I only

- 25. Which of the following functions are continuous for all real numbers x?
  - I.  $y = (x + 2)^2$ II.  $y = \sqrt{2x^2 - x^3}$ III.  $y = 4 \ln x$
  - A. I only B. I and II only
  - C. I and III only D. I, II, and III
- 26. Given a function is defined by  $f(x) = \frac{2x+2}{x^2+5x+4}$ , for what value(s) of x does the function have one or more vertical asymptotes?
  - A. 1 only B. -4 only
  - C. 4 only D. 1 and 4
- 27. Let f be defined as follows:

$$f(x) = \begin{cases} \frac{x^2 - 16}{x - 4} & \text{for } x \neq 4, \\ 15 & \text{for } x = 4 \end{cases}$$

Which of the following are true about f?

- I.  $\lim_{x \to 4} f(x)$  exists
- II. f(4) exists
- III. f(x) is continuous at x = 4
- A. None B. I only
- C. II only D. I and II only
- 28. Consider the function

$$f(x) = \begin{cases} x^2 & \text{for } -2 < x < 2, \\ 4 & \text{for } x \ge 2, \\ 5 & \text{for } x \le -2 \end{cases}$$

- At x = -2 the function has
- A. a jump discontinuity
- B. a removable discontinuity
- C. a point at which the function is continuous
- D. a point at which the function is differentiable

29. 
$$f(x) = \begin{cases} x^2 + 8 & \text{for } x < 8, \\ a^2 x & \text{for } x \ge 8 \end{cases}$$

For what value(s) of a is the function continuous?

- A. ±3 B. 64 C. -9 D. 18
- 30. f is continuous on [2, 4] and has the values shown.

The equation f(x) = 3 must have at least 2 solutions on [2, 4] for k =\_\_\_\_\_.

| A. | 3 | В. | 4 | x    | 2 | 3 | 4 |
|----|---|----|---|------|---|---|---|
| C. | 2 | D. | 6 | f(x) | 5 | k | 9 |

31. Consider  $f(x) = \begin{cases} x+c & \text{for } x < 3, \\ cx^2 + 5 & \text{for } x \ge 3 \end{cases}$ 

For what value of the constant c is f continuous for all real numbers?

- 32. Use the Intermediate Value Theorem to show that  $x^5 = 3^x$  has a solution.
- 33. The function f is shown. Which of the following are true for f on the open interval (a, c)?
  - I. The domain of the derivative of f is the open interval (a, c).
  - II. f is continuous on the open interval (a, c).
  - III. The derivative of f is positive on the open interval (a, c).



## Problem-Attic format version 4.4.279

© 2011-2016 EducAide Software Licensed for use by Michelle Krummel Terms of Use at www.problem-attic.com

|                |    | Calculus Midterm Review | Calculus Midterm Review I: Limits |                  |
|----------------|----|-------------------------|-----------------------------------|------------------|
| 1.<br>Answer:  | В  |                         | 21.<br>Answer:                    | В                |
| 2.<br>Answer:  | D  |                         | 22.<br>Answer:                    | А                |
| 3.<br>Answer:  | С  |                         | 23.<br>Answer:                    | С                |
| 4.<br>Answer:  | С  |                         | 24.<br>Answer:                    | А                |
| 5.<br>Answer:  | В  |                         | 25.<br>Answer:                    | А                |
| 6.<br>Answer:  | В  |                         | 26.<br>Answer:                    | В                |
| 7.<br>Answer:  | D  |                         | 27.<br>Answer:                    | D                |
| 8.<br>Answer:  | А  |                         | 28.<br>Answer:                    | А                |
| 9.<br>Answer:  | 15 |                         | 29.<br>Answer:                    | А                |
| 10.<br>Answer: | 3  |                         | 30.<br>Answer:                    | С                |
| 11.<br>Answer: | D  |                         | 31.<br>Answer:                    | $-\frac{1}{4}$   |
| 12.<br>Answer: | А  |                         | 32.<br>Answer:                    | find an interval |
| 13.<br>Answer: | А  |                         | 33.<br>Answer:                    | В                |
| 14.<br>Answer: | А  |                         |                                   |                  |
| 15.<br>Answer: | D  |                         |                                   |                  |
| 16.<br>Answer: | А  |                         |                                   |                  |
| 17.<br>Answer: | В  |                         |                                   |                  |
| 18.<br>Answer: | С  |                         |                                   |                  |
| 19.            | D  |                         |                                   |                  |

Calculus Midterm Review I: Limits 01/12/2017

Answer:

Answer:

20.

В

С