Calculus Midterm Review I: Limits

Name: \qquad Date: \qquad

1. The figure below shows the graph of f. Use the figure to answer questions 1-4.

At which of the following x-values is f continuous? Choose the BEST answer.
I. -6
II. 0
III. 3
IV. 5
V. 7
VI. 10
A. I, II, and IV
B. I, IV, and VI
C. II, III, and V
D. I and IV
2. At which of the following x-values does f have a removeable discontinuity? Choose the BEST answer.
I. -6
II. 0
III. 3
IV. 5
V. 7
VI. 10
A. I, II, and IV
B. IV and VI
C. II, III, and V
D. V only
3. $\lim _{x \rightarrow 7} f$ is
A. 1
B. 2
C. -1
D. 0
4. $\lim _{x \rightarrow 0^{-}} f$ is
A. -1
B. 0
C. 4
D. no limit
5. $\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}=$
A. $2 \sqrt{x}$
B. $\frac{1}{2 \sqrt{x}}$
C. $-\frac{1}{2 \sqrt{x}}$
D. $2 x$
6. $\lim _{\theta \rightarrow 0} \frac{\cos (\theta+h)-\cos \theta}{h}=$
A. $-\cos \theta$
B. $-\sin \theta$
C. $2 \cos \theta$
D. $-2 \cos \theta$
7. $\lim _{x \rightarrow-3} \frac{1}{(x+3)^{2}}=$
A. 0
B. -3
C. $-\infty$
D. ∞
8. $\lim _{x \rightarrow 3} \frac{\frac{1}{x}-\frac{1}{3}}{x-3}=$
A. $-\frac{1}{9}$
B. $\frac{1}{27}$
C. $\frac{1}{9}$
D. $\frac{1}{3}$
9. If $f(x)=\left\{\begin{array}{ll}-7 & \text { for } x=4, \\ 2 x+7 & \text { for } x \neq 4\end{array}\right.$ then $\lim _{x \rightarrow 4} f(x)=$ \qquad -.
10. Find A so that $\lim _{x \rightarrow 2} \frac{x^{2}+A x-10}{x-2}$ exists.
11. $\lim _{x \rightarrow 0} \frac{\sin 4 x}{2 x}$ is
A. -2
B. 0
C. $\frac{1}{4}$
D. 2
12. $\lim _{x \rightarrow 0} \frac{\sin 5 x}{\sin 8 x}=$
A. $\frac{5}{8}$
B. 0
C. \varnothing
D. $\frac{8}{5}$
13. $\lim _{x \rightarrow 0} \frac{x^{2}}{\tan ^{2} 3 x}=$
A. $\frac{1}{9}$
B. $\frac{1}{3}$
C. \varnothing
D. $\frac{1}{6}$
14. $\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x}{-4 x^{2}}$ is
A. $-\frac{1}{4}$
B. 0
C. $\sin x$
D. undefined
15. $\lim _{x \rightarrow 1^{+}} \frac{1}{x-1}$ is
A. 1
B. 2
C. $-\infty$
D. ∞
16. $\lim _{x \rightarrow 0^{-}} \frac{2 x+1}{x}$ is
A. $-\infty$
B. 2
C. -2
D. ∞
17. $\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}$ is
A. 1
B. -1
C. 0
D. ∞
18. $\lim _{x \rightarrow \pi^{-}} \frac{\cos x}{x-\pi}=$
A. ∞
B. does not exist
C. $-\infty$
D. $\frac{1}{p i}$
19. $\lim _{h \rightarrow \infty} \frac{5}{\sqrt{h+7}}$ is
A. 1
B. 0
C. 3
D. ∞
20. $\lim _{x \rightarrow \infty} \frac{2 x+1}{x}$ is
A. 0
B. 3
C. 2
D. ∞
21. $\lim _{x \rightarrow \infty} \frac{x^{2}}{(1-x)(1+x)}$ is
A. 1
B. -1
C. 0
D. ∞
22. Which of the following functions has a horizontal asymptote at $y=-\frac{1}{2}$?
A. $\frac{x^{3}}{1-2 x^{3}}$
B. $\frac{x}{\sqrt{2 x+1}}$
C. $\frac{x-1}{2 x^{2}+1}$
D. $\frac{2 x-5}{1-4 x^{2}}$
23. Given a function defined by $f(x)=\frac{3 x-12}{x^{2}-6 x+8}$, for what value(s) of x is the function discontinuous?
A. 4 only
B. 2
C. 2,4
D. $-4,-2$
24. Which of the following functions are continuous for all real numbers x ?
I. $y=\frac{1}{x}$
II. $y=2^{x}$
III. $y=\sec x$
A. II only
B. II and III only
C. I and II only
D. I only
25. Which of the following functions are continuous for all real numbers x ?
I. $y=(x+2)^{2}$
II. $y=\sqrt{2 x^{2}-x^{3}}$
III. $y=4 \ln x$
A. I only
B. I and II only
C. I and III only
D. I, II, and III
26. Given a function is defined by $f(x)=\frac{2 x+2}{x^{2}+5 x+4}$, for what value(s) of x does the function have one or more vertical asymptotes?
A. 1 only
B. -4 only
C. 4 only
D. 1 and 4
27. Let f be defined as follows:

$$
f(x)= \begin{cases}\frac{x^{2}-16}{x-4} & \text { for } x \neq 4 \\ 15 & \text { for } x=4\end{cases}
$$

Which of the following are true about f ?
I. $\lim _{x \rightarrow 4} f(x)$ exists
II. $f(4)$ exists
III. $f(x)$ is continuous at $x=4$
A. None
B. I only
C. II only
D. I and II only
28. Consider the function
$f(x)= \begin{cases}x^{2} & \text { for }-2<x<2, \\ 4 & \text { for } x \geq 2, \\ 5 & \text { for } x \leq-2\end{cases}$
At $x=-2$ the function has
A. a jump discontinuity
B. a removable discontinuity
C. a point at which the function is continuous
D. a point at which the function is differentiable
29. $f(x)= \begin{cases}x^{2}+8 & \text { for } x<8, \\ a^{2} x & \text { for } x \geq 8\end{cases}$

For what value(s) of a is the function continuous?
A. ± 3
B. 64
C. -9
D. 18
30. f is continuous on $[2,4]$ and has the values shown.

The equation $f(x)=3$ must have at least 2 solutions on $[2,4]$ for $k=$ \qquad _.
A. 3
B. 4
C. 2
D. 6

x	2	3	4
$f(x)$	5	k	9

31. Consider $f(x)= \begin{cases}x+c & \text { for } x<3, \\ c x^{2}+5 & \text { for } x \geq 3\end{cases}$

For what value of the constant c is f continuous for all real numbers?
32. Use the Intermediate Value Theorem to show that $x^{5}=3^{x}$ has a solution.
33. The function f is shown. Which of the following are true for f on the open interval (a, c) ?
I. The domain of the derivative of f is the open interval (a, c).
II. f is continuous on the open interval (a, c).
III. The derivative of f is positive on the open interval (a, c).

A. I only
B. II only
C. I and II only
D. I, II, and III

1.

Answer: B
2.

Answer: D
3.

Answer: C
4.

Answer: C
5.

Answer: B
6.

Answer: B
7.

Answer: D
8.

Answer: A
9.

Answer: 15
10.

Answer: 3
11.

Answer: D
12.

Answer: A
13.

Answer: A
14.

Answer: A
15.

Answer: D
16.

Answer: A
17.

Answer:
B
18.

Answer: C
19.

Answer:
B
20.

Answer:
C
21.

Answer: B
22.

Answer: A
23.

Answer: C
24.

Answer: A
25.

Answer: A
26.

Answer: B
27.

Answer: D
28.

Answer: A
29.

Answer: A
30.

Answer: C
31.

Answer: $\quad-\frac{1}{4}$
32.

Answer: find an interval
33.

Answer: B

