1. evidence of substituting into binomial expansion
e.g. $a^{5}+\binom{5}{1} a^{4} b+\binom{5}{2} a^{3} b^{2}+\ldots$
identifying correct term for x^{4}
evidence of calculating the factors, in any order
e.g. $\binom{5}{2}, 27 x^{6}, \frac{4}{x^{2}} ; 10\left(3 x^{2}\right)^{3}\left(\frac{-2}{x}\right)^{2}$

Note: Award A1 for each correct factor.
term $=1080 x^{4}$

Note: Award M1M1A1A1A1A0 for 1080 with working shown.
2. (a) 7 terms
(b) A valid approach

Correct term chosen $\binom{6}{3}\left(x^{3}\right)^{3}(-3 x)^{3}$
Calculating $\binom{6}{3}=20,(-3)^{3}=-27$
(A1)(A1)

Term is $-540 x^{12}$
A1 N3
3. The constant term will be the term independent of the variable x.

$$
\begin{align*}
\left(x-\frac{2}{x^{2}}\right)^{9}= & x^{9}+9 x^{8}\left(\frac{-2}{x^{2}}\right)+\ldots+\binom{9}{3} x^{6}\left(\frac{-2}{x^{2}}\right)^{3}+\ldots+\left(\frac{-2}{x^{2}}\right)^{9} \tag{R1}\\
\binom{9}{3} x^{6}\left(\frac{-2}{x^{2}}\right)^{3} & =84 x^{6}\left(\frac{-8}{x^{6}}\right) \tag{A1}\\
& =-672
\end{align*}
$$

4. (a) correct equation in the form $\boldsymbol{r}=\boldsymbol{a}+t \boldsymbol{b}$

$$
\boldsymbol{r}=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right)+t\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right)
$$

(b) (i) attempt to substitute $t=2$ into the equation

$$
\begin{aligned}
& \text { e.g. }\left(\begin{array}{c}
2 \\
6 \\
-4
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right)+2\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right) \\
& \overrightarrow{\mathrm{OP}}=\left(\begin{array}{c}
3 \\
5 \\
-2
\end{array}\right) 3
\end{aligned}
$$

(ii) correct substitution into formula for magnitude
e.g. $\sqrt{3^{2}+5^{2}+(-2)^{2}}, \sqrt{3^{2}+5^{2}+2^{2}}$

$$
|\overrightarrow{\mathrm{OP}}|=\sqrt{38}
$$

5. (a) $\overrightarrow{O B}=\binom{10}{5}$

$$
\begin{equation*}
\overrightarrow{A C}=\binom{-3}{6} \tag{A1}
\end{equation*}
$$

(b) $\overrightarrow{O B} \cdot \overrightarrow{A C}=(10 \times(-3))+(5 \times 6)=0$

Angle $=90^{\circ}$
(A1) (C2)

[4]

6. Angle between lines $=$ angle between direction vectors.

Direction vectors are $\binom{4}{3}$ and $\binom{1}{-1}$.
$\left.\binom{4}{3} \cdot\binom{1}{-1}=\left|\binom{4}{3}\right|\binom{1}{-1} \right\rvert\, \cos \theta$
$4(1)+3(-1)=\left(\sqrt{4^{2}+3^{2}}\right)\left(\sqrt{1^{2}+(-1)^{2}}\right) \cos \theta$
$\cos \theta=\frac{1}{5 \sqrt{2}}=0.1414$
$\theta=81.9^{\circ}(3 \mathrm{sf}),(1.43$ radians $)$
(A1) (C6)

Note: If candidates find the angle between the vectors

$$
\binom{4}{-1} \text { and }\binom{2}{4} \text {, award marks as below: }
$$

Angle required is between $\binom{4}{-1}$ and $\binom{2}{4}$
(M0)(A0)
$\left.\binom{4}{-1} \cdot\binom{2}{4}=\left|\binom{4}{-1}\right|\binom{2}{4} \right\rvert\, \cos \theta$
$4(2)+(-1) 4=\left(\sqrt{4^{2}+(-1)^{2}}\right)\left(\sqrt{2^{2}+4^{2}}\right) \cos \theta$
$\frac{4}{\sqrt{17} \sqrt{20}}=\cos \theta=0.2169$
$\theta=77.5^{\circ}$ (3sf), (1.35 radians)
(A1) (C4)
7. (a) evidence of appropriate approach

$$
\begin{aligned}
& \text { e.g. } \overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{BA}}+\overrightarrow{\mathrm{AC}},\left(\begin{array}{c}
-2 \\
-3 \\
2
\end{array}\right)-\left(\begin{array}{c}
6 \\
-2 \\
3
\end{array}\right) \\
& \overrightarrow{\mathrm{BC}}=\left(\begin{array}{l}
-8 \\
-1 \\
-1
\end{array}\right)
\end{aligned}
$$

A1 N2
(b) attempt to find the length of $\overrightarrow{\mathrm{AB}}$
$|\overrightarrow{\mathrm{AB}}|=\sqrt{6^{2}+(-2)^{2}+3^{2}} \quad(=\sqrt{36+4+9}=\sqrt{49}=7)$
unit vector is $\left.\frac{1}{7}\left(\begin{array}{c}6 \\ -2 \\ 3\end{array}\right) \quad\left(\begin{array}{c}\frac{6}{7} \\ -\frac{2}{7} \\ \frac{3}{7}\end{array}\right)\right)$
A1 N2
(c) recognizing that the dot product or $\cos \theta$ being 0 implies perpendicular correct substitution in a scalar product formula
e.g. $(6) \times(-2)+(-2) \times(-3)+(3) \times(2), \cos \theta=\frac{-12+6+6}{7 \times \sqrt{17}}$
correct calculation
e.g. $\overrightarrow{\mathrm{AB}} \bullet \overrightarrow{\mathrm{AC}}=0, \cos \theta=0$
therefore, they are perpendicular
8. evidence of appropriate approach
e.g. $\left(\begin{array}{c}2 \\ 3 \\ -1\end{array}\right)+s\left(\begin{array}{c}5 \\ -3 \\ 2\end{array}\right)=\left(\begin{array}{l}9 \\ 2 \\ 2\end{array}\right)+t\left(\begin{array}{c}-3 \\ 5 \\ -1\end{array}\right)$
two correct equations
e.g. $2+5 s=9-3 t, 3-3 s=2+5 t,-1+2 s=2-t$
attempting to solve the equations
(M1)
one correct parameter $s=2, t=-1$
P is $(12,-3,3)\left(\right.$ accept $\left.\left(\begin{array}{c}12 \\ -3 \\ 3\end{array}\right)\right)$
A1 N3
9. (a) $\binom{2 x}{x-3} \cdot\binom{x+1}{5}=0$

$$
\begin{align*}
& \Rightarrow 2 x(x+1)+(x-3)(5)=0 \tag{A1}\\
& \Rightarrow 2 x^{2}+7 x-15=0 \tag{C3}
\end{align*}
$$

(b) METHOD 1

$$
\begin{align*}
& 2 x^{2}+7 x-15=(2 x-3)(x+5)=0 \\
& \Rightarrow x=\frac{3}{2} \text { or } x=-5 \tag{A1}
\end{align*}
$$

METHOD 2

$$
\begin{align*}
& x=\frac{-7 \pm \sqrt{7^{2}-4(2)(-15)}}{2(2)} \\
& \Rightarrow x=\frac{3}{2} \text { or } x=-5 \tag{A1}
\end{align*}
$$

