- (a)
 - $\boldsymbol{r} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + t \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}$

correct equation in the form r = a + tb

 $\binom{9}{3}x^6\left(\frac{-2}{x^2}\right)^3 = 84x^6\left(\frac{-8}{x^6}\right)$ (A1) = -672(A1)

The constant term will be the term independent of the variable *x*. 3. $\left(x - \frac{2}{x^2}\right)^9 = x^9 + 9x^8 \left(\frac{-2}{x^2}\right) + \dots + \binom{9}{3} x^6 \left(\frac{-2}{x^2}\right)^3 + \dots + \left(\frac{-2}{x^2}\right)^9$

Term is
$$-540x^{12}$$
 A1

Correct term **chosen**
$$\binom{6}{3} (x^3)^3 (-3x)^3$$
 A1

Note: Award A1 for each correct factor.

A valid approach (M1)
Correct term **chosen**
$$\binom{6}{3} (x^3)^3 (-3x)^3$$
 A1

Correct term **chosen**
$$\binom{6}{3}(x^3)^3(-3x)^3$$
 A1

Correct term **chosen**
$$\binom{6}{3}(x^3)^3(-3x)^3$$
 A1

Note: Award M1M1A1A1A1A0 for 1080 with working shown.

Forrect term **chosen**
$$\binom{6}{3}(x^3)^3(-3x)^3$$
 (M1)

Calculating
$$\binom{6}{2} = 20, (-3)^3 = -27$$
 (A1)(A1)

$$(3)$$

$$(3) 20, (3) 21$$

Calculating
$$\binom{3}{3} = 20, (-3)^2 = -27$$
 (A1)(A1)

alculating
$$\binom{0}{3} = 20, (-3)^3 = -27$$
 (A1)(A1)

Term is
$$-540x^{12}$$
 A1 N3

(M1)

A1

N1

A1

(R1)

(M1)

N2

[6]

[6]

[4]

A1A1A1

1. evidence of substituting into binomial expansion e.g. $a^{5} + {5 \choose 1}a^{4}b + {5 \choose 2}a^{3}b^{2} + \dots$

evidence of calculating the factors, in any order

identifying correct term for x^4

 $term = 1080x^4$

7 terms

2.

4.

(a)

(b)

e.g. $\binom{5}{2}$, $27x^6$, $\frac{4}{x^2}$; $10(3x^2)^3\left(\frac{-2}{x}\right)^2$

(i) attempt to substitute
$$t = 2$$
 into the equation (M1)
 $e.g.\begin{pmatrix} 2\\6\\-4 \end{pmatrix}, \begin{pmatrix} 1\\-1\\2 \end{pmatrix} + 2 \begin{pmatrix} 1\\3\\-2 \end{pmatrix}$
 $\overrightarrow{OP} = \begin{pmatrix} 3\\5\\-2 \end{pmatrix} 3$ A1 N2
(ii) correct substitution into formula for magnitude A1
 $\sqrt{2^2 + 5^2 + (-2)^2}, \sqrt{2^2 + 5^2 + 2^2}$

e.g.
$$\sqrt{3^2 + 5^2 + (-2)^2}, \sqrt{3^2 + 5^2 + 2^2}$$

 $\left|\overrightarrow{OP}\right| = \sqrt{38}$ A1 N1 4

5. (a)
$$\overrightarrow{OB} = \begin{pmatrix} 10 \\ 5 \end{pmatrix}$$
 (A1) (C1)
 $\overrightarrow{AC} = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$ (A1) (C1)

(b) $\overrightarrow{OB} \cdot \overrightarrow{AC} = (10 \times (-3)) + (5 \times 6) = 0$ (M1) Angle = 90° (A1) (C2)

Angle between lines = angle between direction vectors. 6. (M1) Direction vectors are $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$. (A1)

$$\begin{pmatrix} 4\\3 \end{pmatrix} \cdot \begin{pmatrix} 1\\-1 \end{pmatrix} = \begin{pmatrix} 4\\3 \end{pmatrix} \begin{vmatrix} 1\\-1 \end{pmatrix} \cos \theta$$
 (M1)

$$4(1) + 3(-1) = \left(\sqrt{4^2 + 3^2}\right) \left(\sqrt{1^2 + (-1)^2}\right) \cos \theta$$
 (A1)

$$\cos \theta = \frac{1}{5\sqrt{2}} = 0.1414$$
 (A1)

$$\theta = 81.9^{\circ} (3 \text{ sf}), (1.43 \text{ radians})$$
 (A1) (C6)

Note: If candidates find the angle between the vectors $\begin{pmatrix} 4 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ 4 \end{pmatrix}$, award marks as below:

(b)

unit vector is $\frac{1}{7}\begin{pmatrix}6\\-2\\3\end{pmatrix}$ $\begin{pmatrix} = \begin{pmatrix}\frac{6}{7}\\-\frac{2}{7}\\\frac{3}{2} \end{pmatrix}$

attempt to find the length of \overrightarrow{AB} $\left|\overrightarrow{AB}\right| = \sqrt{6^2 + (-2)^2 + 3^2} \quad (= \sqrt{36 + 4 + 9} = \sqrt{49} = 7)$

A1 N2

(M1) (A1)

(M1)

e.g. $\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC}, \begin{pmatrix} -2 \\ -3 \\ 2 \end{pmatrix} - \begin{pmatrix} 6 \\ -2 \\ 3 \end{pmatrix}$ $\overrightarrow{BC} = \begin{pmatrix} -8 \\ -1 \\ -1 \end{pmatrix}$ A1 N2

7. (a) evidence of appropriate approach

(b)

$$\begin{pmatrix} -1 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 4 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix} \begin{pmatrix} -1 \\ 4 \end{pmatrix} \cos \theta$$
(M1)

$$4(2) + (-1) 4 = \left(\sqrt{4^2 + (-1)^2}\right) \left(\sqrt{2^2 + 4^2}\right) \cos \theta$$
(A1)

$$\frac{4}{\sqrt{17}\sqrt{20}} = \cos\theta = 0.2169$$
 (A1)

$$\sqrt{17}\sqrt{20}$$
 (A1) (C4)

Angle required is between $\begin{pmatrix} 4 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ 4 \end{pmatrix}$ (M0)(A0) $\begin{pmatrix} 4 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \left| \begin{pmatrix} 4 \\ -1 \end{pmatrix} \right| \begin{pmatrix} 2 \\ -1 \end{pmatrix} \cos \theta$ (M1)

IB Questionbank Maths SL

[6]

(c)	recognizing that the dot product or $\cos \theta$ being 0 implies perpendicular	(M1)	
	correct substitution in a scalar product formula	A1	
	<i>e.g.</i> (6) × (-2) + (-2) × (-3) + (3) × (2), cos $\theta = \frac{-12+6+6}{7 \times \sqrt{17}}$		
	correct calculation	A1	
	<i>e.g.</i> $\overrightarrow{AB} \bullet \overrightarrow{AC} = 0$, $\cos \theta = 0$		
	therefore, they are perpendicular	AG	N0

8. evidence of appropriate approach (M1)

$$e.g. \begin{pmatrix} 2\\ 3\\ -1 \end{pmatrix} + s \begin{pmatrix} 5\\ -3\\ 2 \end{pmatrix} = \begin{pmatrix} 9\\ 2\\ 2 \end{pmatrix} + t \begin{pmatrix} -3\\ 5\\ -1 \end{pmatrix}$$
two correct equations

$$e.g. 2 + 5s = 9 - 3t, 3 - 3s = 2 + 5t, -1 + 2s = 2 - t$$

attempting to solve the equations (M1)
one correct parameter
$$s = 2, t = -1$$
 A1

P is
$$(12, -3, 3)$$
 $\left(\operatorname{accept} \begin{pmatrix} 12 \\ -3 \\ 3 \end{pmatrix} \right)$ A1 N3

[6]

[8]

9. (a)
$$\binom{2x}{x-3} \cdot \binom{x+1}{5} = 0$$
 (M1)(M1)
 $\Rightarrow 2x(x+1) + (x-3)(5) = 0$ (A1)
 $\Rightarrow 2x^2 + 7x - 15 = 0$ (C3)

(b) METHOD 1

$$2x^{2} + 7x - 15 = (2x - 3)(x + 5) = 0$$

$$\Rightarrow x = \frac{3}{2} \text{ or } x = -5$$
(A1) (C1)
METHOD 2

$$x = \frac{-7 \pm \sqrt{7^{2} - 4(2)(-15)}}{2(2)}$$

$$\Rightarrow x = \frac{3}{2} \text{ or } x = -5$$
(A1) (C1)

[4]