AP Calculus AB

AP Exam Concept Study Guide

Functions and Trig 1 1. A function y = f(x) is even iff $f(-x) = \dots$. 2. Even functions are symmetric with respect to the _____. 3. A function y = f(x) is odd iff $f(-x) = \dots$. 4. Odd functions are symmetric with respect to the _____. 5. A function f(x) is periodic with period p > 0 if $f(x + p) = \dots$. 6. Functions f and g are inverses of each other iff $f(g(x)) = \dots = \dots$. 7. If functions f and g are inverses of each other, and f(a) = b, then _____. 8. Pythagorean Identities (a) $\sin^2 x + \cos^2 x =$ (b) $\tan^2 x + 1 =$ (c) $\cot^2 x + 1 =$ 9. Even/Odd Properties (a) $\sin(-\theta) =$ (b) $\cos(-\theta) =$ (c) $\tan(-\theta) =$ 10. Double-Angle Formulas (a) $\sin 2\theta =$ (b) $\cos 2\theta =$

- 11. Power Reducing Formulas
 - (a) $\sin^2 \theta =$ (b) $\cos^2 \theta =$
- 12. State the domain and range for the following functions
 - (a) $f(x) = e^x$ (d) $f(x) = \sin x$ (g) $f(x) = \sin^{-1} x$

(b)
$$f(x) = \ln x$$
 (e) $f(x) = \cos x$ (h) $f(x) = \cos^{-1} x$

(c)
$$f(x) = \frac{1}{x}$$
 (f) $f(x) = \tan x$ (i) $f(x) = \tan^{-1} x$

- 2 Limits
 - 1. A limit exists if and only if the following three criteria are met:
 - (a) $\lim_{x \to a^+} f(x)$
 - (b) $\lim_{x \to a^{-}} f(x)$ (c) $\lim_{x \to a^{+}} f(x) = L =$

In other words, the function must:

- 2. When evaluating a limit as $x \to a$, first try _____
 - (a) If substitution gives $\frac{0}{0}$, you must keep working. Try ______, or use other algebraic techniques to simplify. Then try ______.
 - (b) If substitution gives $\frac{0}{k}$, where k is a nonzero constant, then $\lim_{x \to a} f(x) = \dots$.
 - (c) If substitution gives $\frac{k}{0}$, where k is a nonzero constant, then $\lim_{x \to a} f(x) = \dots$, or \dots , or \dots .
- 3. When evaluating a one-sided limit, first try _____
 - (a) If substitution gives $\frac{k}{0^+}$, where k is a positive constant, then the limit is _____.
 - (b) If substitution gives $\frac{k}{0^{-}}$, where k is a positive constant, then the limit is _____.
- 4. When evaluating a limit as $x \to \pm \infty$, first try _____
 - (a) If substitution gives $\frac{0}{\pm \infty}$, then $\lim_{x \to \pm \infty} f(x) = \dots$.
 - (b) If substitution gives $\frac{k}{\pm \infty}$, where k is a constant, then $\lim_{x \to \pm \infty} f(x) = \dots$.
 - (c) If substitution gives $\frac{\pm \infty}{k}$, where k is a constant, then $\lim_{x \to \pm \infty} f(x) = \dots$, or \dots , or \dots .
 - (d) If $\lim_{x \to \pm \infty} f(x) = L$, then y = L is a ______ of f.
- 5. Recall the following special trig limits:

(a)
$$\lim_{x \to 0} \frac{\sin x}{x} = \dots$$
 (b) $\lim_{x \to 0} \frac{1 - \cos x}{x} = \dots$

3 Continuity and Differentiability

- 6. A function is continuous at a point c if and only if the following three criteria are met:
 - (a) f(c) (b) $\lim_{x \to c} f(x)$ (c) $\lim_{x \to c} f(x) =$

7. A function is differentiable at a point c if $\lim_{h\to 0} \frac{f(c+h) - f(c)}{h}$ exists. In other words, the slope must:

- 8. If a function is ______ it must also be ______
- 9. Types of discontinuity:
 - (a) Removable: $\lim_{x \to a^-} f(x) \lim_{x \to a^+} f(x)$, but $\lim_{x \to a} f(x) f(a)$ (b) Jump: $\lim_{x \to a^-} f(x) - \lim_{x \to a^+} f(x)$
 - (c) Infinite: $\lim_{x \to a^-} f(x) = \dots$ and/or $\lim_{x \to a^+} f(x) = \dots$

4 Derivatives

10. Definition of the Derivative

•
$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} =$$
 • $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} =$

- 11. Basic Rules:
 - $[x^n]' =$ $[f \cdot g]' =$ $\left[\frac{f}{g}\right]' =$ [f(g(x))]' =
- 12. Derivative of an Inverse: $[f^{-1}]'(b) =$
- 13. Trig and Inverse Trig Derivatives
 - $[\sin u]' =$ • $[\cos u]' =$ • $[\cos u]' =$ • $[\cot u]' =$ • $[\sec u]' =$ • $[\sec u]' =$

14. Exponential and Logarithmic Derivatives

• $[e^u]' =$ • $[b^u]' =$ • $[\ln u]' =$

5 Applications of Derivatives

- 15. The derivative of a function is the slope of the _____ line at a given point.
- 16. A normal line is ______ to the tangent line at the point of tangency.
- 17. The average rate of change of f(x) on the interval [a, b] =
- 18. Related Rates
 - Step 1:
 - Step 2:
 - Step 3:
 - Step 4:
 - Step 5:
- 19. Intermediate Value Theorem: If f(x) is continuous on [a, b], then for every value d between f(a) and f(b), there is guaranteed a value c between a and b such that:
- 20. Mean Value Theorem: If f(x) is continuous on [a, b] and differentiable on (a, b), then
 - (a) there is guaranteed a value c between a and b such that: _____
 - (b) there is guaranteed a value c between a and b such that the tangent line to the curve at c is ______ the secant line passing through the endpoints.
- 21. Rolle's Theorem: If f(x) is continuous on [a, b] and differentiable on (a, b), and f(a) = f(b), then
 - (a) there is guaranteed a value c between a and b such that:
 - (b) there is guaranteed a value c between a and b such that the tangent line to the curve at c is

22. Relationships between f, f', f''

- (a) If f'(x) > 0, then f(x) is ______
- (b) If f'(x) < 0, then f(x) is ______
- (c) If f'(x) = 0, then f(x) could have ______
- (d) If f''(x) > 0, then f(x) is ______
- (e) If f''(x) < 0, then f(x) is ______
- (f) If f''(x) = 0, then f(x) could have _____
- (g) If f''(x) > 0, then f'(x) is ______
- (h) If f''(x) < 0, then f'(x) is ______
- (i) If f''(x) = 0, then f'(x) could have _____
- (j) If f(c) exists but f'(c) does not exist, the graph could have a ______, , _____, or ______, or ______ at x = c.

23. First derivative test:

- (a) Find the critical points (where $f'(x) = \dots$ or \dots)
- (b) Use the critical points to partition the domain into subintervals
- (c) Determine whether f'(x) is positive or negative on each subinterval

f'(x)	+	-	+	+	-	-
f(x)						

24. Second derivative test (for concavity):

- (a) Find the critical points (where $f''(x) = \dots$ or \dots)
- (b) Use the critical points to partition the domain into subintervals
- (c) Determine whether f''(x) is positive or negative on each subinterval

f''(x)	+	-	+	+	-	-
f'(x)						
f(x)						

- 25. Second derivative test (for extrema):
 - (a) Find the critical points (where $f'(x) = \dots$ or \dots)
 - (b) Use the critical points to partition the domain into subintervals
 - (c) Determine whether f''(x) is positive or negative at each critical point

f''(x)	+	-	
f'(x)	0	0	
f(x)			

6 Integration

26. The Fundamental Theorem of Calculus: Let F'(x) = f(x), where f(x) is continuous on the closed interval [a, b]. This means that F(x) is the ______ of f(x), and f(x) is the ______ of F(x).

(a)
$$\int_{a}^{b} f(x) dx =$$

(b)
$$\frac{d}{dx} \int_{a}^{g(x)} f(t) dt =$$

(c)
$$\frac{d}{dx} \int_{h(x)}^{g(x)} f(t) dt =$$

27. Basic Integrals

(a)
$$\int x^n dx =$$
 (c) $\int e^x dx =$ (e) $\int \ln x dx =$
(b) $\int \frac{1}{x} dx =$ (d) $\int a^x dx =$ (f) $\int dx =$

28. Trig Integrals

(a)
$$\int \sin u \, du =$$
 (c) $\int \sec^2 u \, du =$ (e) $\int \sec u \tan u \, du =$
(b) $\int \cos u \, du =$ (d) $\int \csc u \cot u \, du =$ (f) $\int \csc^2 u \, du =$

29. Properties of the Definite Integral

7 Particle Motion

- 30. Position: _____
- 31. Velocity: _____ = ____
- 32. Acceleration: _____ = ____ = ____

33. Initial position: _____ Initial velocity: _____ Initial acceleration: _____

- 34. A particle is at the origin when _____
- 35. Speed: _____

36. Speed is increasing when

- •
- •

37. Speed is decreasing when

- •
- •

38. A particle is at rest when _____

39. A particle is moving away from its point of origin when _____ and is moving towards its point of origin when _____

40. Velocity is increasing when _____, and decreasing when _____

- 41. Average velocity:
- 42. Average acceleration:
- 43. Net distance traveled:
- 44. Total distance traveled:
- 45. Position of a particle at time t = b:

8 Applications of Integration

- 46. Average Value:
- 47. Total Area
 - (a) If f(x) > 0 on [a, b], then A =
 - (b) If f(x) < 0 on [a, b], then A =
 - (c) If f(x) > 0 on [a, c] and f(x) < 0 on [c, b], then A =
- 48. Area Between Two Curves
 - (a) If y = f(x) is above y = g(x) on the interval [a, b], then $A = \int_{x=a}^{b} f(x) dx$

(b) If x = f(y) is to the right of x = g(y) on the interval [c, d], then $A = \int_{u=c}^{d} dx$

- 49. Volume of Solids of Revolution
 - (a) Disk Method: $V = \pi r^2 h$ i. About the x-axis: $V = \pi \int_{x=a}^{b}$ ii. About the y-axis: $V = \pi \int_{y=c}^{d}$ iii. About the line y = k: $V = \pi \int_{x=a}^{b}$ iv. About the line x = k: $V = \pi \int_{y=c}^{d}$ (b) Washer Method: $V = \pi R^2 h - \pi r^2 h$ i. About the x-axis: $V = \pi \int_{x=a}^{b}$ ii. About the y-axis: $V = \pi \int_{y=c}^{b}$ iii. About the line y = k: $V = \pi \int_{y=c}^{b}$ iv. About the line x = k: $V = \pi \int_{y=c}^{b}$

- (c) Shell Method: $V = 2\pi rh$ i. About the *x*-axis: $V = 2\pi \int_{y=c}^{d}$ ii. About the *y*-axis: $V = 2\pi \int_{x=a}^{b}$ iii. About the line y = k: $V = 2\pi \int_{x=a}^{b}$ iv. About the line x = k: $V = 2\pi \int_{y=c}^{d}$
- 50. Volume of Cross Sections: $V = \int_a^b V$
 - (a) Area of square with base r:
 - (b) Area of square with diagonal r:
 - (c) Area of equilateral triangle with base r:
 - (d) Area of isosceles right triangle with hypotenuse r:
 - (e) Area of isosceles right triangle with leg r:
 - (f) Area of semi-circle with diameter r:

9 Calculator Use

You will need to use your calculator to do the following:

- 1. Graph a function within an arbitrary viewing window
- 2. Solve equations graphically (by finding zeros or points of intersection)
 - (a) To find a zero of a function, enter the equation in Y_1 and use [2nd] [CALC] [2:zero]
 - (b) To find a point of intersection, enter the first equation in Y_1 , the second equation in Y_2 , and use [2nd] [CALC] [5:intersect]
- 3. Numerically calculate the derivative of a function at a point a
 - (a) [MATH] [8]
 - (b) Old operating system: nDeriv(function,X,a)
- 4. Numerically calculate the value of a definite integral from a to b
 - (a) [MATH] [9]
 - (b) Old operating system: fnInt(function,X,a,b)

*Remember, you can refer to an equation stored in Y_1 by pressing

- (a) [alpha] [f4] $[1:Y_1]$
- (b) [VARS] \rightarrow [Y-VARS] [1:Function] [1: Y_1]