AP Calculus AB

AP Exam Concept Study Guide

1 Functions and Trig

1. A function $y=f(x)$ is even iff $f(-x)=$ \qquad -.
2. Even functions are symmetric with respect to the \qquad .
3. A function $y=f(x)$ is odd iff $f(-x)=$ \qquad .
4. Odd functions are symmetric with respect to the \qquad -.
5. A function $f(x)$ is periodic with period $p>0$ if $f(x+p)=$ \qquad
6. Functions f and g are inverses of each other iff $f(g(x))=$ \qquad $=$ \qquad
7. If functions f and g are inverses of each other, and $f(a)=b$, then \qquad --.
8. Pythagorean Identities
(a) $\sin ^{2} x+\cos ^{2} x=$
(b) $\tan ^{2} x+1=$
(c) $\cot ^{2} x+1=$
9. Even/Odd Properties
(a) $\sin (-\theta)=$
(b) $\cos (-\theta)=$
(c) $\tan (-\theta)=$
10. Double-Angle Formulas
(a) $\sin 2 \theta=$
(b) $\cos 2 \theta=$
11. Power Reducing Formulas
(a) $\sin ^{2} \theta=$
(b) $\cos ^{2} \theta=$
12. State the domain and range for the following functions
(a) $f(x)=e^{x}$
(d) $f(x)=\sin x$
(g) $f(x)=\sin ^{-1} x$
(b) $f(x)=\ln x$
(e) $f(x)=\cos x$
(h) $f(x)=\cos ^{-1} x$
(c) $f(x)=\frac{1}{x}$
(f) $f(x)=\tan x$
(i) $f(x)=\tan ^{-1} x$

2 Limits

1. A limit exists if and only if the following three criteria are met:
(a) $\lim _{x \rightarrow a^{+}} f(x)$ \qquad
(b) $\lim _{x \rightarrow a^{-}} f(x)$ \qquad
(c) $\lim _{x \rightarrow a^{+}} f(x)=L=$

In other words, the function must:
2. When evaluating a limit as $x \rightarrow a$, first try \qquad
(a) If substitution gives $\frac{0}{0}$, you must keep working. Try \qquad algebraic techniques to simplify. Then try \qquad -_.
(b) If substitution gives $\frac{0}{k}$, where k is a nonzero constant, then $\lim _{x \rightarrow a} f(x)=$ \qquad
(c) If substitution gives $\frac{k}{0}$, where k is a nonzero constant, then $\lim _{x \rightarrow a} f(x)=$ \qquad , or \qquad .
3. When evaluating a one-sided limit, first try \qquad
(a) If substitution gives $\frac{k}{0^{+}}$, where k is a positive constant, then the limit is \qquad
(b) If substitution gives $\frac{k}{0^{-}}$, where k is a positive constant, then the limit is \qquad .
4. When evaluating a limit as $x \rightarrow \pm \infty$, first try \qquad
(a) If substitution gives $\frac{0}{ \pm \infty}$, then $\lim _{x \rightarrow \pm \infty} f(x)=$ \qquad
(b) If substitution gives $\frac{k}{ \pm \infty}$, where k is a constant, then $\lim _{x \rightarrow \pm \infty} f(x)=$ \qquad .
(c) If substitution gives $\frac{ \pm \infty}{k}$, where k is a constant, then $\lim _{x \rightarrow \pm \infty} f(x)=$ \qquad , or \qquad
(d) If $\lim _{x \rightarrow \pm \infty} f(x)=L$, then $y=L$ is a \qquad of f.
5. Recall the following special trig limits:
(a) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=$
(b) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=$ \qquad

3 Continuity and Differentiability

6. A function is continuous at a point c if and only if the following three criteria are met:
(a) $f(c)$ \qquad
(b) $\lim _{x \rightarrow c} f(x)$ \qquad
(c) $\lim _{x \rightarrow c} f(x)=$ \qquad
7. A function is differentiable at a point c if $\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$ exists. In other words, the slope must:
8. If a function is \qquad it must also be \qquad .
9. Types of discontinuity:
(a) Removable: $\lim _{x \rightarrow a^{-}} f(x) \ldots \lim _{x \rightarrow a^{+}} f(x)$, but $\lim _{x \rightarrow a} f(x) \ldots-{ }_{-----} f(a)$
(b) Jump: $\lim _{x \rightarrow a^{-}} f(x)$------ $\lim _{x \rightarrow a^{+}} f(x)$
(c) Infinite: $\lim _{x \rightarrow a^{-}} f(x)=\ldots---$ and/or $\lim _{x \rightarrow a^{+}} f(x)=$ \qquad

4 Derivatives

10. Definition of the Derivative

- $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=$
- $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=$

11. Basic Rules:

- $\left[x^{n}\right]^{\prime}=$
- $[f \cdot g]^{\prime}=$
- $\left[\frac{f}{g}\right]^{\prime}=$
- $[f(g(x))]^{\prime}=$

12. Derivative of an Inverse: $\left[f^{-1}\right]^{\prime}(b)=$
13. Trig and Inverse Trig Derivatives

- $[\sin u]^{\prime}=$
- $[\tan u]^{\prime}=$
- $[\sec u]^{\prime}=$
- $[\cos u]^{\prime}=$
- $[\cot u]^{\prime}=$
- $[\csc u]^{\prime}=$

14. Exponential and Logarithmic Derivatives

- $\left[e^{u}\right]^{\prime}=$
- $\left[b^{u}\right]^{\prime}=$
- $[\ln u]^{\prime}=$

5 Applications of Derivatives

15. The derivative of a function is the slope of the \qquad line at a given point.
16. A normal line is \qquad to the tangent line at the point of tangency.
17. The average rate of change of $f(x)$ on the interval $[a, b]=$
18. Related Rates

- Step 1:
- Step 2:
- Step 3:
- Step 4:
- Step 5:

19. Intermediate Value Theorem: If $f(x)$ is continuous on $[a, b]$, then for every value d between $f(a)$ and $f(b)$, there is guaranteed a value c between a and b such that: \qquad
20. Mean Value Theorem: If $f(x)$ is continuous on $[a, b]$ and differentiable on (a, b), then
(a) there is guaranteed a value c between a and b such that: \qquad
(b) there is guaranteed a value c between a and b such that the tangent line to the curve at c is
\qquad the secant line passing through the endpoints.
21. Rolle's Theorem: If $f(x)$ is continuous on $[a, b]$ and differentiable on (a, b), and $f(a)=f(b)$, then
(a) there is guaranteed a value c between a and b such that: \qquad
(b) there is guaranteed a value c between a and b such that the tangent line to the curve at c is
\qquad
22. Relationships between $f, f^{\prime}, f^{\prime \prime}$
(a) If $f^{\prime}(x)>0$, then $f(x)$ is \qquad
(b) If $f^{\prime}(x)<0$, then $f(x)$ is
(c) If $f^{\prime}(x)=0$, then $f(x)$ could have \qquad
(d) If $f^{\prime \prime}(x)>0$, then $f(x)$ is \qquad
(e) If $f^{\prime \prime}(x)<0$, then $f(x)$ is \qquad
(f) If $f^{\prime \prime}(x)=0$, then $f(x)$ could have \qquad
(g) If $f^{\prime \prime}(x)>0$, then $f^{\prime}(x)$ is \qquad
(h) If $f^{\prime \prime}(x)<0$, then $f^{\prime}(x)$ is \qquad
(i) If $f^{\prime \prime}(x)=0$, then $f^{\prime}(x)$ could have \qquad
(j) If $f(c)$ exists but $f^{\prime}(c)$ does not exist, the graph could have a \qquad
\qquad , or \qquad at $x=c$.
23. First derivative test:
(a) Find the critical points (where $f^{\prime}(x)=$ \qquad or \qquad)
(b) Use the critical points to partition the domain into subintervals
(c) Determine whether $f^{\prime}(x)$ is positive or negative on each subinterval

$f^{\prime}(x)$	+	-	+	+	-	-
$f(x)$						

24. Second derivative test (for concavity):
(a) Find the critical points (where $f^{\prime \prime}(x)=$ \qquad or \qquad
(b) Use the critical points to partition the domain into subintervals
(c) Determine whether $f^{\prime \prime}(x)$ is positive or negative on each subinterval

$f^{\prime \prime}(x)$	+	-	+	+	-	-
$f^{\prime}(x)$						
$f(x)$						

25. Second derivative test (for extrema):
(a) Find the critical points (where $f^{\prime}(x)=$ \qquad or \qquad
(b) Use the critical points to partition the domain into subintervals
(c) Determine whether $f^{\prime \prime}(x)$ is positive or negative at each critical point

$f^{\prime \prime}(x)$	+	-
$f^{\prime}(x)$	0	0
$f(x)$		

6 Integration

26. The Fundamental Theorem of Calculus: Let $F^{\prime}(x)=f(x)$, where $f(x)$ is continuous on the closed interval $[a, b]$. This means that $F(x)$ is the \qquad of $f(x)$, and $f(x)$ is the
\qquad of $F(x)$.
(a) $\int_{a}^{b} f(x) d x=$
(b) $\frac{d}{d x} \int_{a}^{g(x)} f(t) d t=$
(c) $\frac{d}{d x} \int_{h(x)}^{g(x)} f(t) d t=$
27. Basic Integrals
(a) $\int x^{n} d x=$
(c) $\int e^{x} d x=$
(e) $\int \ln x d x=$
(b) $\int \frac{1}{x} d x=$
(d) $\int a^{x} d x=$
(f) $\int d x=$
28. Trig Integrals
(a) $\int \sin u d u=$
(c) $\int \sec ^{2} u d u=$
(e) $\int \sec u \tan u d u=$
(b) $\int \cos u d u=$
(d) $\int \csc u \cot u d u=$
(f) $\int \csc ^{2} u d u=$
29. Properties of the Definite Integral
(a) If $\int_{a}^{b} f(x) d x=k$, then $\int_{b}^{a} f(x) d x=$ \qquad
(b) If f is an even function and $\int_{0}^{a} f(x) d x=k$, then $\int_{-a}^{a} f(x) d x=$ \qquad - .
(c) If f is an odd function and $\int_{0}^{a} f(x) d x=k$, then $\int_{-a}^{a} f(x) d x=$ \qquad

7 Particle Motion

30. Position: \qquad
31. Velocity: \qquad $=$ \qquad
32. Acceleration: \qquad $=$ \qquad $=$ \qquad
33. Initial position: \qquad Initial velocity: \qquad Initial acceleration: \qquad
34. A particle is at the origin when \qquad
35. Speed: \qquad
36. Speed is increasing when
37. Speed is decreasing when

-
-

38. A particle is at rest when \qquad
39. A particle is moving away from its point of origin when \qquad and is moving towards its point of origin when \qquad
40. Velocity is increasing when \qquad and decreasing when \qquad
41. Average velocity:
42. Average acceleration:
43. Net distance traveled:
44. Total distance traveled:
45. Position of a particle at time $t=b$:

8 Applications of Integration

46. Average Value:
47. Total Area
(a) If $f(x)>0$ on $[a, b]$, then $A=$
(b) If $f(x)<0$ on $[a, b]$, then $A=$
(c) If $f(x)>0$ on $[a, c]$ and $f(x)<0$ on $[c, b]$, then $A=$
48. Area Between Two Curves
(a) If $y=f(x)$ is above $y=g(x)$ on the interval $[a, b]$, then $A=\int_{x=a}^{b}$
(b) If $x=f(y)$ is to the right of $x=g(y)$ on the interval $[c, d]$, then $A=\int_{y=c}^{d}$
49. Volume of Solids of Revolution
(a) Disk Method: $V=\pi r^{2} h$
i. About the x-axis: $V=\pi \int_{x=a}^{b}$
ii. About the y-axis: $V=\pi \int_{y=c}^{d}$
iii. About the line $y=k: V=\pi \int_{x=a}^{b}$
iv. About the line $x=k: V=\pi \int_{y=c}^{d}$
(b) Washer Method: $V=\pi R^{2} h-\pi r^{2} h$
i. About the x-axis: $V=\pi \int_{x=a}^{b}$
ii. About the y-axis: $V=\pi \int_{y=c}^{d}$
iii. About the line $y=k: V=\pi \int_{x=a}^{b}$
iv. About the line $x=k: V=\pi \int_{y=c}^{d}$
(c) Shell Method: $V=2 \pi r h$
i. About the x-axis: $V=2 \pi \int_{y=c}^{d}$
ii. About the y-axis: $V=2 \pi \int_{x=a}^{b}$
iii. About the line $y=k: V=2 \pi \int_{x=a}^{b}$
iv. About the line $x=k: V=2 \pi \int_{y=c}^{d}$
50. Volume of Cross Sections: $V=\int_{a}^{b}$
(a) Area of square with base r :
(b) Area of square with diagonal r :
(c) Area of equilateral triangle with base r :
(d) Area of isosceles right triangle with hypotenuse r :
(e) Area of isosceles right triangle with leg r :
(f) Area of semi-circle with diameter r :

9 Calculator Use

You will need to use your calculator to do the following:

1. Graph a function within an arbitrary viewing window
2. Solve equations graphically (by finding zeros or points of intersection)
(a) To find a zero of a function, enter the equation in Y_{1} and use [2nd] [CALC] [2:zero]
(b) To find a point of intersection, enter the first equation in Y_{1}, the second equation in Y_{2}, and use [2nd] [CALC] [5:intersect]
3. Numerically calculate the derivative of a function at a point a
(a) $[\mathrm{MATH}]$ [8]
(b) Old operating system: nDeriv (function, X, a)
4. Numerically calculate the value of a definite integral from a to b
(a) $[\mathrm{MATH}]$ [9]
(b) Old operating system: fnInt (function, $\mathrm{X}, \mathrm{a}, \mathrm{b}$)
*Remember, you can refer to an equation stored in Y_{1} by pressing
(a) [alpha] [f4] [1: Y_{1}]
(b) [VARS] \rightarrow [Y-VARS] [1:Function] [1: $\left.Y_{1}\right]$
