AP Calculus AB Unit 7 Review Name: _____ Block: _____

_____ Date:

3. $\frac{d}{dx} \int^{\sin x} \cos \sqrt{t} \, dt$

1.
$$\frac{d}{dx} \int_{1}^{x} \sqrt[5]{t^2 - 1} dt$$
 2. $\frac{d}{dx} \int_{x^2}^{0} (3t - 1) dt$

4. Given below is the graph of f(t) and the function g(x) is defined to be $g(x) = \int_{0}^{2x} f(t) dt$

5.
$$\int \frac{\tan(4x)}{\cos^2(4x)} dx$$

6.
$$\int \frac{6x^2 \sec^2(x^3)}{\tan(x^3)} dx$$

7.
$$\int 4x \sqrt[3]{3x^2 - 12} dx$$

8.
$$\int \frac{x + 3}{\sqrt{2x + 1}} dx$$

9.
$$\int 8e^{1 - 4x} dx$$

10.
$$\int \frac{3\ln(x + 1)}{2x + 2} dx$$

11. Let P(t) represent the number of wolves in a population at time t years, when $t \ge 0$. The population P(t) is increasing at a rate directly proportional to 800 - P(t), where the constant of proportionality is k.

- (a) If P(0) = 500, find P(t) in terms of t and k.
- (b) If P(2) = 700, find k.
- (c) Find $\lim_{t\to\infty} P(t)$.

12. Solve the differential equation $\frac{dy}{dx} = y^2(6-2x)$.

- 13. Find the general solution to the differential equation $e^{-y} \sin x y' \cos^2 x = 0$.
- 14. Find the particular solution to the differential equation $\frac{dy}{dx} = \frac{3x^2}{e^{2y}}$ with the initial condition f(0) = 2.
- 15. Find the particular solution to $\frac{dy}{dx} = 1 y + x^2 yx^2$ with the initial condition f(0) = -4.
- 16. Verify that $x = 3t^2 + 1$ is a solution to the differential equation 2x x't + 4 = x''.
- 17. Consider the slope field for the differential equation $\frac{dy}{dx} = \frac{e^{2y-1}}{x+1}$.
 - 1. Describe all points for which the slope field has horizontal segments.
 - 2. Describe all points for which the slope field has vertical segments.
 - 3. Describe all points for which $\frac{dy}{dx} = 1$.

Sketch a slope field for the given differential equations at the indicated points

Sketch the particular solution to the differential equation represented by the slope field below.

21.	f(3) = 0
22.	f(0) = -2
23.	f(-2) = 0

24. (CALC) Let R be the region in the first quadrant bounded by the x-axis and the graphs of $y = \ln x$ and y = 5 - x, as shown below.

- (a) Write and evaluate an integral to find the area of R.
- (b) Region R is the base of a solid. For the solid, each cross section perpendicular to the x-axis is a square. Write, but do not evaluate, an expression involving one or more integrals that gives the volume of the solid.
- (c) The horizontal line y = k divides R into two regions of equal area. Write, but do not solve, an equation involving one or more integrals whose solution gives the value of k.
- 25. Let $f(x) = 2x^2 6x + 4$ and $g(x) = 4\cos(\frac{1}{4}\pi x)$. Let R be the region bounded by the graphs of f and g, as shown in the figure below.

- (a) Without using your calculator, write and evaluate an integral expression to find the area of R.
- (b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line y = 4.
- (c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Write, but do not evaluate, an integral expression that gives the volume of the solid.